
12

Armada: Automated Verification of Concurrent Code with

Sound Semantic Extensibility

JACOB R. LORCH, Microsoft Research, USA

YIXUAN CHEN, Yale University, USA

MANOS KAPRITSOS and HAOJUN MA, University of Michigan, USA

BRYAN PARNO, Carnegie Mellon University, USA

SHAZ QADEER, Calibra, USA

UPAMANYU SHARMA, Massachusetts Institute of Technology, USA

JAMES R. WILCOX, Certora, USA

XUEYUAN ZHAO, Carnegie Mellon University, USA

Safely writing high-performance concurrent programs is notoriously difficult. To aid developers, we introduce
Armada, a language and tool designed to formally verify such programs with relatively little effort. Via a C-
like language and a small-step, state-machine-based semantics, Armada gives developers the flexibility to
choose arbitrary memory layout and synchronization primitives so that they are never constrained in their
pursuit of performance. To reduce developer effort, Armada leverages SMT-powered automation and a library
of powerful reasoning techniques, including rely-guarantee, TSO elimination, reduction, and pointer analysis.
All of these techniques are proven sound, and Armada can be soundly extended with additional strategies
over time. Using Armada, we verify five concurrent case studies and show that we can achieve performance
equivalent to that of unverified code.

CCS Concepts: • Software and its engineering → Formal software verification; Concurrent program-

ming languages;

Additional Key Words and Phrases: Refinement, weak memory models, x86-TSO

ACM Reference format:

Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Haojun Ma, Bryan Parno, Shaz Qadeer, Upamanyu Sharma,
James R. Wilcox, and Xueyuan Zhao. 2022. Armada: Automated Verification of Concurrent Code with Sound
Semantic Extensibility. ACM Trans. Program. Lang. Syst. 44, 2, Article 12 (May 2022), 39 pages.
https://doi.org/10.1145/3502491

This work was supported in part by the National Science Foundation under grant no. FMitF-2018915, the National Science
Foundation and VMware under grant no. CNS-1700521, a grant from the Alfred P. Sloan Foundation, and a Google Faculty
Fellowship.
Authors’ addresses: J. R. Lorch, Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA; email: lorch@
microsoft.com; Y. Chen, Yale University, 51 Prospect Street, New Haven, CT 06511, USA; email: yixuan.chen@yale.edu;
M. Kapritsos and H. Ma, Department of Computer Science and Engineering, 2260 Hayward St, Ann Arbor, MI,
48109, USA; emails: {manosk, mahaojun}@umich.edu; B. Parno and X. Zhao, School of Computer Science and
Carnegie Institute of Technology, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA, 15213, USA; emails:
parno@cmu.edu, xueyuanz@alumni.cmu.edu; S. Qadeer, Meta Inc., 1288 123rd Ave NE, Bellevue, WA 98005, USA; email:
shaz.qadeer@gmail.com; U. Sharma, 32 Vassar St G978A, Cambridge, MA 02139, USA; email: upamanyu@mit.edu; J. R.
Wilcox, Paul G. Allen Center, Box 352350, 185 E Stevens Way NE, Seattle, WA 98195-2350, USA; email: james@certora.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0164-0925/2022/05-ART12 $15.00
https://doi.org/10.1145/3502491

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

https://orcid.org/0000-0002-7269-2769
https://orcid.org/0000-0001-8659-8493
https://orcid.org/0000-0002-2155-4809
https://doi.org/10.1145/3502491
mailto:permissions@acm.org
https://doi.org/10.1145/3502491

12:2 J. R. Lorch et al.

1 INTRODUCTION

Ever since processor speeds plateaued in the early 2000s, building high-performance systems has
increasingly relied on concurrency. Writing concurrent programs, however, is notoriously error
prone, as programmers must consider all possible thread interleavings. If a bug manifests on only
one such interleaving, it is extremely hard to detect using traditional testing techniques, let alone
to reproduce and repair. Formal verification provides an alternative: a way to guarantee that the
program is completely free of such bugs.

This article presents Armada, a methodology, language, and tool that enables low-effort verifica-
tion of high-performance, concurrent code. Armada’s contribution rests on three pillars: flexibility

for high performance; automation to reduce manual effort; and an expressive, low-level framework
that allows for sound semantic extensibility. These three pillars let us achieve automated verifica-
tion, with semantic extensibility, of concurrent C-like imperative code executed in a weak memory
model (x86-TSO [38]).

Prior work (see Section 8) has achieved some of these, but not simultaneously. For example,
Iris [27] supports powerful and sound semantic extensibility but focuses less on automation and
C-like imperative code. Conversely, CIVL [21], for instance, supports automation and imperative
code without sound extensibility. Instead, it relies on paper proofs when using techniques such as
reduction, and the CIVL team is continuously introducing new trusted tactics as they encounter
new use cases [40]. Recent work building larger verified concurrent systems [6, 7, 18] supports
sound extensibility but sacrifices flexibility and, thus, some potential for performance optimization,
to reduce the burden of proof writing.

In contrast, Armada achieves all three properties, which we now expand and discuss in greater
detail:

Flexibility. To support high-performance code, Armada lets developers choose any memory lay-
out and any synchronization primitives they need for high performance. Fixing on any one strategy
for concurrency or memory management will inevitably rule out clever optimizations that devel-
opers come up with in practice. Hence, Armada uses a common low-level semantic framework
that allows arbitrary flexibility akin to the flexibility provided by a C-like language. For exam-
ple, it supports pointers to fields of objects and to elements of arrays, lock-free data structures,
optimistic racy reads, and cache-friendly memory layouts. We enable such flexibility by using a
small-step state-machine semantics rather than one that preserves structured program syntax but
limits a priori the set of programs that can be verified.

Automation. However, actually writing programs as state machines is unpleasantly tedious.
Hence, Armada introduces a higher-level syntax that lets developers write imperative programs
that are automatically translated into state-machine semantics. To prove these programs correct,
the developer then writes a series of increasingly simplified programs and proves that each is a
sound abstraction of the previous program, eventually arriving at a simple, high-level specifica-
tion for the system. To create these proofs, the Armada developer simply annotates each level
with the proof strategy necessary to support the refinement proof connecting it to the previous
level. Armada then analyzes both levels and automatically generates a lemma demonstrating that
refinement holds. Typically, this lemma uses one of the libraries we have developed to support
eight common concurrent-systems reasoning patterns (e.g., logical reasoning about memory re-
gions, rely-guarantee, TSO elimination, and reduction). These lemmas are then verified by an
SMT-powered theorem prover. Explicitly manifesting Armada’s lemmas lets developers perform
lemma customization, that is, augmentations to lemmas in the rare cases in which the automatically
generated lemmas are insufficient.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:3

Sound semantic extensibility. Each of Armada’s proof-strategy libraries, and each proof gener-
ated by our tool, is mechanically proven to be correct. Insisting on verifying these proofs gives us
the confidence to extend Armada with arbitrary reasoning principles, including newly proposed
approaches, without worrying that in the process we may undermine the soundness of our sys-
tem. Note that inventing new reasoning principles is an explicit non-goal for Armada. Instead, we
expect Armada’s flexible design to support new reasoning principles as they arise.

Our current implementation of Armada uses Dafny [29] as a general-purpose theorem prover.
Dafny’s SMT-based [12] automated reasoning simplifies development of our proof libraries and de-
velopers’ lemma customizations. However, Armada’s broad structure and approach are compatible
with any general-purpose theorem prover. We extend Dafny with a backend that produces C code
compatible with ClightTSO [46], which can then be compiled to an executable by CompCertTSO
in a way that preserves Armada’s guarantees.

We evaluate Armada on five case studies and show that it handles complex heap and concur-
rency reasoning with relatively little developer-supplied proof annotation. We also show that Ar-
mada programs can achieve performance comparable to that of unverified code.

In summary, this article makes the following contributions.

• A flexible language for developing high-performance, verified, concurrent systems code.
• A mechanically verified, extensible semantic framework that already supports a collection

of eight verified libraries for performing refinement-based proofs, including region-based
pointer reasoning, rely-guarantee, TSO elimination, and reduction.

• A practical tool that uses these techniques to enable reasoning about complex concurrent
programs with modest developer effort.

This article is an expanded version of an earlier paper [33]. It contains more details about Ar-
mada, discusses a later version of the implementation (see Section 5), and describes an additional
case study (see Section 6.3).

2 OVERVIEW

As shown in Figure 1, to use Armada, a developer writes an implementation program in the Armada
language. The developer also writes an imperative specification, which need not be performant or
executable, in that language. This specification should be easy to read and understand so that oth-
ers can determine (e.g., through inspection) whether it meets their expectations. Given these two
programs, Armada’s goal is to prove that all finite behaviors of the implementation are permitted
by the specification, that is, that the implementation refines the specification. The developer de-
fines what this means via a refinement relation (R). For instance, if the state contains a console log,
the refinement relation might be that the log in the implementation is a prefix of that in the spec.

Because of the large semantic gap between the implementation and specification, we do not
attempt to directly prove refinement. Instead, the developer writes a series of N Armada programs
to bridge the gap between the implementation (level 0) and the specification (level N +1). Each pair
of adjacent levels i, i+1 in this series should be similar enough to facilitate automatic generation of
a refinement proof that respects R; the developer supplies a short proof recipe that gives Armada
enough information to automatically generate such a proof. Given the pairwise proofs, Armada
leverages refinement transitivity to prove that the implementation indeed refines the specification.

We formally express refinement properties and their proofs in the Dafny language [29]. To
formally describe what refinement means, Armada translates each program into its small-step
state-machine semantics, expressed in Dafny. For instance, we represent the state of a program as
a Dafny datatype and the set of its legal transitions as a Dafny predicate over pairs of states. To
formally prove refinement between a pair of levels, we generate a Dafny lemma whose conclusion

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:4 J. R. Lorch et al.

Fig. 1. Armada Overview The Armada developer writes a low-level implementation in Armada designed

for performance. The developer then defines a series of levels, each of which abstracts the program at the

previous level, eventually reaching a small, simple specification. Each refinement is justified by a simple

refinement recipe specifying which refinement strategy to use. As shown via blue arrows, Armada automati-

cally translates each program into a state machine and generates refinement proofs demonstrating that the

refinement relation R holds between each pair of levels. Finally, it uses transitivity to show that R holds

between the implementation and the spec.

indicates a refinement relation between their state machines. We use Dafny to verify all proof
material we generate so that ultimately the only aspect of Armada we must trust is its translation
of the implementation and specification into state machines.

2.1 Example Specification and Implementation

To introduce Armada, we describe its use on an example program that searches for a good, but not
necessarily optimal, solution to an instance of the traveling salesman problem.

The specification, shown in Figure 2, demands that the implementation output a valid solution
(i.e., one that visits every city exactly once), and it implicitly requires the program not to crash.
Armada specifications can use powerful declarations as statements. Here, the somehow statement
expresses that somehow the program updates s so that valid_soln(s) holds.

The example implementation, also shown in Figure 2, creates 100 threads. Each thread searches
through 10,000 random solutions. If a thread finds a solution shorter than the best length found so
far, it updates the global variables storing the best length and solution. The main routine joins the
threads and prints the best solution found.

Note that this example has a benign race: the access to the shared variable best_len in the first
if (len < best_len). It is benign because the worst consequence of reading a stale value is that
the thread unnecessarily acquires the mutex.

2.2 Example Proof Strategy

We bridge the gap between the implementation and specification by introducing intermedi-
ate levels that gradually simplify the implementation. Figure 3 depicts the program, called
ArbitraryGuard, at level 1 in our example proof. This program is like the implementation except
that it arbitrarily chooses whether to acquire the lock by using * in place of the guard condition
len < best_len.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:5

Fig. 2. The Armada spec and implementation for our running example, which searches for a not-necessarily-

optimal solution to a traveling salesman problem.

Fig. 3. Version of our example program in which the first guard condition is relaxed to an arbitrary choice.

Our transformation of the Implementation program to the ArbitraryGuard program is an ex-
ample of weakening, in which a statement is replaced by one whose behaviors are a superset of
the original. Or, more precisely, a state-transition relation is replaced by a superset of that relation.
The two levels’ programs thus exhibit weakening correspondence, that is, it is possible to map each

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:6 J. R. Lorch et al.

Fig. 4. In this recipe for a refinement proof, the first line indicates what should be proved (that the

Implementation-level program refines the ArbitraryGuard-level program) and the second line indi-

cates which strategy (in this case, weakening) generates the proof.

Fig. 5. Version of the example program in which the assignment to best_len is now sequentially consistent.

Fig. 6. This recipe proves that the ArbitraryGuard-level program refines the BestLenSequential-level

program. It uses TSO elimination based on strategy-specific parameters. In this case, the first parameter

(best_len) indicates which location’s updates differ between levels and the second parameter is an owner-

ship predicate.

low-level program step to an equivalent or weaker one in the high-level program. The proof that
Implementation refines ArbitraryGuard is straightforward but tedious to write. Instead, the de-
veloper simply writes a recipe for this proof, shown in Figure 4. This recipe instructs Armada to
generate a refinement proof using the weakening correspondence between the program pair.

Having removed the racy read of best_len, we can now demonstrate an ownership invariant:
that threads only access that variable while they hold the mutex and no two threads ever hold
the mutex. This allows a further transformation of the program to the one shown in Figure 5.
This replaces the assignment best_len := len with best_len ::= len, signifying the use of se-
quentially consistent memory semantics for the update rather than x86-TSO semantics [38]. Since
strong consistency is easier to reason about than weak-memory semantics, proofs for further levels
will be easier.

Just as for weakening, Armada generates a proof of refinement between programs whose only
transformation is a replacement of assignments to a variable with sequentially consistent assign-
ments. For such a proof, the developer’s recipe supplies the variable name and the ownership
predicate, as shown in Figure 6.

If the developer mistakenly requests a TSO-elimination proof for a pair of levels that do not
permit it (e.g., if the first level still has the racy read and, thus, does not own the location when it
accesses it), then Armada will either generate an error message indicating the problem or generate
an invalid proof. In the latter case, running the proof through the theorem prover (i.e., Dafny veri-
fier) will produce an error message. For instance, it might indicate which statement may access the
variable without satisfying the ownership predicate or which statement might cause two threads
to simultaneously satisfy the ownership predicate.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:7

3 SEMANTICS AND LANGUAGE DESIGN

Armada is committed to allowing developers to adopt any memory layout and synchronization
primitives needed for high performance. This affects the design of the Armada language and our
choice of semantics.

The Armada language (Section 3.1) allows the developer to write specification, code, and proofs
in terms of programs, and the core language exposes low-level primitives (e.g., fixed-width integers
or specific hardware-based atomic instructions) so that the developer is not locked into a particular
abstraction and can reason about the performance of the code without an elaborate mental model
of what the compiler might do. This also simplifies the Armada compiler.

To facilitate simpler, cleaner specifications and proofs, Armada also includes high-level and
abstract features that are not compilable. For example, Armada supports mathematical integers,
and it allows arbitrary sequences of instructions to be performed atomically (given suitable proofs).

The semantics of an Armada program (Section 3.2), however, are expressed in terms of a small-
step state machine, which provides a “lowest common denominator” for reasoning via a rich and
diverse set of proof strategies (Section 4). It also avoids baking in assumptions that facilitate one
particular strategy but preclude others.

3.1 The Armada Language

As shown in Figure 1, developers express implementations, proof steps, and specifications all as
programs in the Armada language. This provides a natural way of describing refinement: an imple-
mentation refines a specification if all of its externally visible behaviors are valid behaviors of the
specification. The developer helps prove refinement by bridging the gap between implementation
and specification via intermediate-level programs.

We restrict the implementation level to the core Armada features (Section 3.1.1), which can be
compiled directly to corresponding low-level C code. The compiler will reject programs outside
this core. Programs at all other levels, including the specification, can use the entirety of Armada
(Section 3.1.2), summarized in Figure 7. Developers connect these levels using a refinement relation
(Section 3.1.3). To let Armada programs use external libraries and special hardware features, we
also support developer-defined external methods (Section 3.1.4).

3.1.1 Core Armada. The core of Armada supports features commonly used in high-
performance C implementations. It has as primitive types signed and unsigned integers of 8, 16, 32,
and 64 bits, and pointers. It supports arbitrary nesting of structs and single-dimensional arrays,
including structs of arrays and arrays of structs. It lets pointers point not only to whole objects
but also to fields of structs and elements of arrays. It does not yet support unions.

For control flow, it supports method calls, return, goto, if, and while, along with break and
continue.

It supports allocation of objects (malloc) and arrays of objects (calloc), and freeing them
(dealloc). It supports creating threads (create_thread) and waiting for their completion (join).

For synchronization between threads, it supports read-modify-write instructions such as
atomic_exchange and compare_and_swap.

Each statement may have at most one shared-location access, since the hardware does not sup-
port atomically performing multiple shared-location accesses. To aid our compiler and proof gen-
erators in identifying non-shared locations, one can mark a local variable as noaddr, meaning that
it is illegal to take its address and, consequently, it can be assumed to be non-shared.

3.1.2 Proof and Specification Support. The full Armada language offers rich expressivity
to allow natural descriptions of specifications. Furthermore, all program levels between the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:8 J. R. Lorch et al.

Fig. 7. Armada language syntax.

implementation and specification are abstract constructs that exist solely to facilitate the proof;
thus, they also use this full expressivity. Here, we briefly describe interesting features of the
language.

Meta variables provide access to machine states in an Armada program. Variable $me evaluates
to the current thread’s ID, $sb_empty evaluates to true when the current thread’s store buffer
(Section 3.2.1) is empty, and $state allows access to miscellaneous fields of the current total state.

Meta functions let one express properties of the state that cannot be described by normal
expressions. One uses global_view(e) to evaluate e as if the store buffer were empty, that is,
from the perspective of all other threads. One uses if_undefined(e1, e2) to turn an expression
that may cause undefined behavior into one that cannot; for example, if_undefined(*p, 0) is
*p if it is legal to dereference p and 0 otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:9

Atomic blocks are modeled as executing to completion without interruption by other threads.
The semantics of an atomic block prevents thread interruption but not termination; a behavior
may terminate in the middle of an atomic block. This allows us to prove that a block of statements
can be treated as atomic without having to prove that no statement in the block exhibits undefined
behavior (see Section 3.2.3).

Following CIVL [21], we permit some program counters within otherwise atomic blocks to be
marked as yield points. Hence, the semantics of an explicit_yield block is that a thread t within
such a block cannot be interrupted by another thread unless t ’s program counter is at a yield point
(marked by a yield statement). This permits modeling atomic sequences that span loop iterations
without having to treat the entire loop as atomic. Section 4.2.1 shows the utility of such sequences,
and Flanagan et al. describe further uses in proofs of atomicity via purity [16].

Enablement conditions can be attached to a statement that cannot execute unless all of its con-
ditions are met. One adds an enablement condition C to a statement by preceding that statement
with the statement assumeC . To make this easier for developers to understand, we provide an alias
of wait_until for the keyword assume; the developer can then think of the program as blocking
at that point until the condition becomes true. If similar conditions need to be assumed at multi-
ple sites, developers can define a universal step constraint, which is an enablement condition on
every instruction in the program. As an example, to add a requirement that the variable w must be
positive before any statement can execute, one writes universal_step_constraint WPositive
{ w >= 0 }. Such a constraint is a top-level declaration, not a statement; thus, its syntax does not
appear in Figure 7.

TSO-bypassing assignment statements perform an update with sequentially consistent se-
mantics. Normal assignments (using :=) follow x86-TSO semantics (Section 3.2.1), but assignments
using ::= are immediately visible to other threads.

Assert statements crash the program if their predicates do not hold.
Somehow statements allow the declarative expression of arbitrary atomic actions. A somehow

statement can have undefined_unless clauses (preconditions), modifies clauses (framing), and
ensures clauses (postconditions). The semantics of a somehow statement is that it has undefined be-
havior if any of its preconditions are violated and that it modifies the lvalues in its framing clauses
arbitrarily subject to the constraint that each two-state postcondition predicate holds between the
old and new states. The two-state predicate in an ensures clause uses the standard Dafny [29]
style of referring to components of the pre-state within old expressions. For instance, to say that
the variable x must be at least twice what it was before, one could use ensures x >= old(x) * 2.

Ghost variables represent the state that is not part of the machine state and has sequentially
consistent semantics. Ghost variables can be of any type supported by the theorem prover, not just
those that can be compiled to C. Ghost types supported by Armada include mathematical integers;
datatypes; sequences; and finite and infinite sets, multisets, and maps.

Ghost types cannot appear in a struct or array, to simplify heap modeling. This restriction
does not significantly reduce expressivity, since ghost variables support powerful datatype and
sequence constructs. The downside of this restriction is that developers cannot introduce a ghost
state directly into an object at higher levels. A reasonable alternative is to introduce a ghost vari-
able mapping object pointers to the extra state. That is, instead of replacing a struct S with a
struct S' that includes a field F of ghost type T, one might instead add a ghost variable m of type
map<ptr<S>,T>, and maintain the invariant that m(p) contains the value that should have been in
(*p).F.

The ghost state is permitted at all levels, but it may only affect control flow and the non-ghost
state in the abstract levels above the implementation level. The ghost state is permitted to affect

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:10 J. R. Lorch et al.

Fig. 8. This is the default model for external methods, in which the read set is the list of locations in reads
clauses and the write set is the list of locations in modifies clauses. read_read_set reads all of the loca-

tions in the read set, havoc_write_set non-deterministically writes to all of the write set locations, and

ManifestUndefinedBehavior triggers undefined behavior and terminates execution (see Section 3.2.3).

control flow at abstract levels since all states in an abstract program, including the program counter,
are effectively ghost states.

3.1.3 Refinement Relations. Armada aims to prove that the implementation refines the spec-
ification. The developer defines, via a refinement relation R, what refinement means. Formally,
R ⊆ S0 × SN+1, where Si is the set of states of the level-i program, level 0 is the implementation,
and level N + 1 is the spec. A pair 〈s0, sN+1〉 is in R if the state is permitted to be s0 whenever
according to the specification it may be sN+1. An implementation refines the specification if every
finite behavior of the implementation has, with the addition of stuttering steps, a corresponding
equal-length behavior of the specification where corresponding state pairs are in R.

The developer writes R as an expression parameterized over the low-level and high-level states.
Hence, we can also use R to define what refinement means between programs at consecutive levels
in the overall refinement proof, that is, to define Ri,i+1 for arbitrary level i . To allow composition
into an overall proof, R must be transitive: ∀i, si , si+1, si+2 . 〈si , si+1〉 ∈ Ri,i+1 ∧ 〈si+1, si+2〉 ∈

Ri+1,i+2 ⇒ 〈si , si+2〉 ∈ Ri,i+2.
A typical refinement proof involves the developer finding a relation R and demonstrating that

each behavior of the implementation corresponds to a behavior of the specification where corre-
sponding state pairs are in R. Note that such a relation R is merely a proof tool and is not trusted.
To prove refinement, one must prove that R ⊆ R.

3.1.4 External Methods. Since we do not expect Armada programs to run in a vacuum, Armada
supports declaring and calling external methods. An external method models a runtime, library, or
operating-system function; or a hardware instruction the compiler supports, such as test-and-set.
For example, the developer could model a runtime-supplied print routine via:
� �
method {: extern} PrintInteger(n:uint32) {

somehow modifies log ensures log == old(log) + [n];
}
� �

In a sequential program, we could model an external call via a straightforward Hoare-style
signature. However, in a concurrent setting, this could be unsound if, for example, the external
library were not thread-safe. Hence, we allow the Armada developer to supply a more detailed,
concurrency-aware model of the external call as a “body” for the method. This model is not, of
course, compiled; rather, it specifies the effects of the external call on Armada’s underlying state-
machine model. Since it is not compiled, it may use the uncompilable subset of Armada.

If the developer does not supply a model for an external method, we model it via the Armada
code snippet in Figure 8. That is, we model the method as making arbitrary and repeated changes to

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:11

Fig. 9. Operational semantics, Part I.

its write set (as specified in a modifies clause); as having undefined behavior if a concurrent thread
ever changes its read set (as specified in a reads clause); and as returning when its postcondition
is satisfied, but not necessarily as soon as it is satisfied.

3.2 Small-Step State-Machine Semantics

To create a soundly extensible semantic framework, Armada translates an Armada program into
a state machine that models its small-step semantics. We represent the state of a program as a
Dafny datatype that contains the set of threads, the heap, static variables, ghost state, and whether
and how the program terminated. The thread state includes the program counter, the stack, and
the x86-TSO store buffer (Section 3.2.1). We represent steps of the state machine (i.e., the set of
legal transitions) as a Dafny predicate over pairs of states. Examples of steps include assignment,
method calls and returns, and evaluating the guard of an if or while.

Figures 9 and 10 present a simplified operational semantics covering core concepts of the model,
eliding details of expression evaluation, memory updates, and undefined-behavior conditions. The
transition rules presented in Figure 10 demonstrate peculiarities of the x86-TSO model (Tau,
TSO-Write, Fence, Xchg) and illustrate the expressiveness of the specification language (TSO-
Bypassing-Write, Assume). In the subsequent subsections, we highlight four interesting elements
of our semantics: they encode the complex x86-TSO model (Section 3.2.1), they are program spe-
cific (Section 3.2.2), they model undefined behavior as a terminating state (Section 3.2.3), and they
model the heap as immutable (Section 3.2.4).

3.2.1 x86 Total-Store Order (TSO). We model memory using x86-TSO semantics [38]. Specifi-
cally, a thread’s write is not immediately visible to other threads; rather, it enters a store buffer, a
first-in-first-out (FIFO) queue. To model this, our state includes a global memory of type Mem and,
for each thread, a store buffer of type list Entry. A thread’s local view (S |tid) of memory is what
would result from applying its store buffer, in FIFO order, to the global memory.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:12 J. R. Lorch et al.

Fig. 10. Operational semantics, Part II.

We formalize the behavior of x86-TSO using the TSO-Writing rule. A write becomes globally
visible when the processor asynchronously drains it from a store buffer. This asynchronicity is mod-
eled by the non-deterministic triggering of the Tau rule. The developer can use a memory-fence
instruction fence to flush the store buffer. The Fence rule formalizes this behavior by imposing an
enabling condition that the store buffer is empty. This alternative model is equivalent to flushing
due to the presence of the Tau rule.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:13

We have found it useful to include some ghost state in each store buffer entry: the PC of the
instruction that added the entry. This ghost state simplifies writing proofs without changing the
semantics. The additional ghost information is not presented in Figure 9, as it does not affect
executions of state machines.

3.2.2 Program-Specific Semantics. To aid in automated verification of state-machine properties,
we tailor each state machine to the program rather than make it generic to all programs. Such
specificity ensures that the verification condition for a specific step relation includes only facts
about that step.

A program-specific semantics for any specific instruction is simpler than a generic semantics
because it only has to specify the behavior of the semantics in the case of that instruction. Thus,
the formula for the program-specific semantics is less complex and smaller. Furthermore, program-
specific semantics bypasses the trouble of variable binding in typical deep embedding semantics
frameworks. Instead of modeling the variable binding mechanism manually, the state machine
translator defers the task to the host langauge by generating specific abstract datatypes for global
and stack variables. As a result, the eval and update functions can access and modify the corre-
sponding fields in the abstract datatype with ease.

Specificity also aids reasoning by case analysis by restricting the space of program counters,
heap types, and step types. A generic semantics may have to quantify over types-for example, the
semantics of + depends on whether it is adding int32s or int64s—whereas a program-specific
semantics never has to do that. Specifically, the program-counter type is an enumerated type that
includes only PC values in the program. The state’s heap allows only built-in types and user-
defined struct types that appear in the program text.

Furthermore, the state-machine step (transition) type is an enumerated type that includes only
the specific steps in the program. Each step type has a function that describes its specific semantics.
In other words, the transition rules shown in Figure 10 are specialized to individual instructions
in the program. For instance, there is no generic function for executing an update statement (rule
TSO-Write). Instead, for each update statement, there is a program-specific step function with
the specific lvalue and rvalue from the statement.

The end result is an SMT-friendly semantics. That is, Dafny automatically discharges many
proofs with little or no help.

3.2.3 Undefined Behavior as Termination. Our semantics has three terminating states. These
occur when the program exits normally, when asserting a false predicate, and when invoking un-
defined behavior. The latter means executing a statement under conditions we do not model, for
example, an access to a freed pointer or a division by zero. Our decision to model undefined behav-
ior as termination follows CIVL [21] and simplifies our specifications by removing a great deal of
non-determinism. It also simplifies reasoning about behaviors, for example, by letting developers
state invariants that do not necessarily hold after such an undefined action occurs. However, this
decision means that, as in CIVL, our refinement proofs are meaningless if (1) the spec ever exhibits
undefined behavior, or (2) the refinement relation R allows the low-level program to exhibit unde-
fined behavior when the high-level program does not. We prevent condition (2) by adding to the
developer-specified R the conjunct “if the low-level program exhibits undefined behavior, then the
high-level program does.” Preventing condition (1) currently relies on the careful attention of the
specification writer (or reader).

We have found it useful to model any instruction that can cause undefined behavior as two
different state machine transitions: one that causes undefined behavior and one that avoids it. That
is, in the list of state machine transition cases, we have two cases for each instruction that can cause
undefined behavior. For instance, if one instruction is r := n / d, we have one transition case

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:14 J. R. Lorch et al.

for when d is zero and one for when it is non-zero. This simplifies proof generation since, as we
will discuss in Section 4, we often break a proof about the state machine into one proof for each
state machine transition. Having a separate case for undefined-behavior steps simplifies the proof
for each case, since each such proof has to consider only one type of outcome.

3.2.4 Immutable Heap Structure. To permit pointers to fields of structs and to array elements,
we model the heap as a forest of pointable-to objects. The roots of the forest are (1) allocated objects
and (2) global and local variables whose addresses are taken in the program text. An array object
has its elements as children and a struct object has its fields as children. To simplify reasoning, we
model the heap as unchanging throughout the program’s lifetime; that is, allocation is modeled
not as creating an object but as finding an object and marking its pointers as valid; freeing an
object marks all of its pointers as freed. This design does not prevent us from using dynamic data
structures such as linked lists, as the heap model still supports the dynamic allocation of new
objects and connecting them through pointers.

To make this sound, we restrict allowable operations to ones whose compiled behaviors lie
within our model. Some operations, such as dereferencing a pointer to freed memory or compar-
ing another pointer to such a pointer, trigger undefined behavior. We disallow all other operations
whose behavior could diverge from our model. For instance, we disallow programs that cast point-
ers to other types or that perform mathematical operations on pointers.

Due to their common use in C array idioms, we do permit comparison between pointers to
elements of the same array, and adding to (or subtracting from) a pointer to an array element.
That is, we model pointer comparison and offsetting but treat them as having undefined behavior
if they stray outside the bounds of a single array. Unfortunately, this prevents the C idiom of
treating a pointer to the nth element of an n-element array as a sentinel for the end of the array.
Instead, the programmer must use a pointer to the n − 1st element.

4 REFINEMENT FRAMEWORK

Armada’s goals rely on our extensible framework for automatic generation of refinement proofs.
The framework consists of:

Strategies. A strategy is a proof generator designed for a particular type of correspondence be-
tween a low-level and a high-level program. An example correspondence is weakening; two pro-
grams exhibit it if they match except for statements in which the high-level version admits a
superset of behaviors of the low-level version.

Library. Our library of generic lemmas is useful in proving refinements between programs. Often,
they are specific to a certain correspondence.

Recipes. The developer generates a refinement proof between two program levels by specifying
a recipe. A recipe specifies which strategy should generate the proof, and the names of the two
program levels. A recipe can also include strategy-specific annotations; for instance, the variable-
hiding strategy described in Section 4.2.8 takes as additional arguments the list of hidden variables.
Figure 4 shows an example.

Verification experts can extend the framework with new strategies and library lemmas. Devel-
opers can leverage these new strategies via recipes. Armada ensures sound extensibility because
for a proof to be considered valid, all of its lemmas and all of the lemmas in the library must be
verified by Dafny. Hence, arbitrarily complex extensions can be accommodated. For instance, we
need not worry about unsoundness or incorrect implementation of the Cohen-Lamport reduction
logic we use in Section 4.2.1 or the rely-guarantee logic we use in Section 4.2.2.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:15

Many of the proofs we must generate are so elaborate that automated verification would take
too long to verify them or, worse, only verify them sometimes, leading to proof instability. Thus,
we break each proof into modest-sized lemmas, with each lemma small enough to be amenable to
automated verification. Generally, our approach is to use one lemma for each step or, in the case
of two-step properties, each pair of steps. Furthermore, we enforce local reasoning by selectively
revealing definitions of state machines so that only the related elements are visible to the prover
(Section 4.1.2). Generating such a large number of lemmas would be unreasonably tedious for a
human proof writer; thus, it is fortunate that we can use an automatic proof generator. This lets
us obtain stable proofs with little human cost.

4.1 Aspects Common to All Strategies

Each strategy can leverage a set of Armada tools. For instance, we provide machinery to prove
that developer-supplied inductive invariants are inductive and to produce a refinement function
that maps low-level states to high-level states.

The most important generic proof technique we provide is non-determinism encapsulation. State-
transition relations are non-deterministic because some program statements are non-deterministic;
for example, a method call will set uninitialized stack variables to arbitrary values. Reasoning
about such general relations is challenging. Thus, the state-machine translator encapsulates all
non-deterministic parameters of each step in a step object and expresses the transition relation
as a deterministic function NextState that computes state i + 1 from state i and step object i . For
instance, if a method M has an uninitialized stack variable x, then each step object corresponding to
a call to M has a field newframe_x that stores x’s initial value. This way, the proof can reason about
the low-level program using an annotated behavior, which consists of a sequence of states and a
sequence of step objects. The relationship between pairs of adjacent states in such an annotated
behavior is a deterministic function, making reasoning easier.

4.1.1 Regions. To simplify proofs about pointers, we use region-based reasoning, in which mem-
ory locations (i.e., addresses) are assigned abstract region ids. Proving that two pointers are in
different regions shows they are not aliased.

We carefully design our region reasoning to be automation friendly and compatible with any
Armada strategy. To assign regions to memory locations rather than rely on developer-supplied
annotations, we use Steensgaard’s pointer analysis algorithm [45]. Our implementation of Steens-
gaard’s algorithm begins by assigning distinct regions to all memory locations, then merges the
regions of any two variables assigned to each other.

We perform region reasoning purely in Armada-generated proofs without requiring changes
to the program or the state machine semantics. Hence, in the future, we can add more complex
pointer analysis as needed.

We assign regions to memory locations through a proof construct called the region map. This
is a map from addresses to a program-dependent RegionId datatype. For each pointer variable
(i.e., variable with type ptr<T>), we generate a region invariant for that variable stating that any
non-null address it holds is in the designated region and prove this invariant inductively.

To employ region-based reasoning, the developer simply adds use_regions to a recipe. Armada
then performs the static analysis described earlier, generates the pointer invariants, and generates
lemmas to inductively prove the invariants. If regions are overkill and the proof only requires an
invariant that all addresses of in-scope variables are valid and distinct, the developer instead adds
use_address_invariant.

4.1.2 Selective State-Machine Revelation. Armada generates a state machine tailored to the pro-
gram to facilitate automated verification (Section 3.2.2). Sometimes, a specialized state machine

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:16 J. R. Lorch et al.

still contains too much information to verify in a timely fashion. However, lemmas generated by
Armada usually reason about only a single step, and the rest of the state machine is irrelevant to
the verification. For example, when proving that a particular step obeys the ownership predicate
in TSO elimination (Section 4.2.3), one does not care about any other steps.

To aid in automated verification, Armada localizes proof contexts to particular step(s). It hides
state machine definitions using the opaque Dafny attribute and generates revelation lemmas spe-
cialized to individual steps. Because Armada generates individual lemmas to reason about specific
step(s), it can deterministically decide which revelation lemma(s) to invoke.

Compared with alternative approaches such as using triggers and reliance on SMT solvers’
heuristics, selective revelation enforces better local reasoning and ensures that verification scales
with program size.

4.1.3 Lemma Customization. Occasionally, verification fails for programs that correspond prop-
erly, because an automatically generated lemma has insufficient annotation to guide Dafny. For
instance, the developer may weaken y := x & 1 to y := x % 2, which is valid but requires
bit-vector reasoning. Thus, Armada lets the developer arbitrarily supplement an automatically
generated lemma with additional developer-supplied lemmas (or lemma invocations).

When the developer specifies that a certain customization should be inserted into a specific
lemma, Armada chooses an appropriate location in the lemma to insert it. That is, it inserts it after
any generic lemma invocations that might be useful to the customization and after any revelations
of relevant opaque definitions (Section 4.1.2).

It is useful for strategies to use predictable lemma names so that lemma-customization annota-
tions can refer to them in a way that will not change with minor changes to the programs. The
developer can label statements involved in tricky reasoning; our strategies will generate lemmas
about those statements with predictable names using those labels. For instance, if the developer
writes the statement label BitAnd: y := x & 1 in the method Foo and wants to weaken it to
y := x % 2, then the developer can specify that extra lemma material belongs in the lemma
lemma_LiftNext_Update_Foo_BitAnd that is generated by the weakening proof strategy. The
developer may add an extra lemma invocation about bit-vectors and modulo on the variable x,
which will be automatically inserted in lemma_LiftNext_Update_Foo_BitAnd. It will be inserted
after any revelations of relevant opaque definitions and after any generic lemmas invoked by the
weakening proof strategy.

Figure 11 shows, as an example, one of two lemma customizations used in a barrier implementa-
tion (see Section 6.1). In this case, the developer discovers that a specific automatically generated
lemma does not verify. Thus, the developer writes a helper lemma demonstrating that if the barrier
variable is non-zero in a thread’s local view then its store buffer must contain one or the barrier
variable must contain one. They then use the keyword extra to tell Armada to invoke certain extra
proof text (an invocation of the helper lemma) within the automatically generated lemma. Armada
inserts that text verbatim after various helpful lemma calls the strategy always includes, such as
lemma_GetThreadLocalViewAlwaysCommutesWithConvert. That way, the lemma customization
can use the postconditions of those helpful lemmas.

Armada’s lemma customization contrasts with static checkers such as CIVL [21]. The con-
straints on program correspondence imposed by a static checker must be restrictive enough to
ensure soundness. If they are more restrictive than necessary, a developer cannot appeal to more
complex reasoning to convince the checker to accept the correspondence. A static checker could,
in theory, make up for this by providing a way for developers to supply proofs of specific proper-
ties. Our technique is even more general because it lets developers augment any lemma generated
by the proof-generation strategy, not just ones that the strategy’s authors considered as potentially
in need of augmentation.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:17

Fig. 11. Sample use of lemma customization.

4.1.4 Intermediate Proof Levels. To simplify the task of proving refinement between a low-level
program L and a high-level programH , we use a multi-layered proof approach. That is, we generate
intermediate state machines L+, LA, and HA and prove that L refines L+, L+ refines LA, LA refines
HA, and HA refines H . We then invoke a lemma showing transitivity of refinement to demonstrate
that L refines H . We now describe each of these intermediate state machines in turn.

The first intermediate state machine, L+, is L augmented with auxiliary state. For instance, one
piece of state in L+ but not L is the ID of the initial thread running main. It is often convenient for
a proof to refer to this ID, and this obviates the developer explicitly storing it in a ghost variable.
Another type of auxiliary state is the region map discussed in Section 4.1.1.

The second intermediate state machine, LA, introduces atomic substeps to L+. Recall that the
trusted state-machine semantics models block atomicity by forbidding a thread T ′ from execut-
ing while a different thread T is inside an atomic block. It does this by modeling a state ma-
chine step as a sequence of substeps that cannot end in the middle of an atomic block (unless
the program terminates there, e.g., due to undefined behavior). However, it still modelsT ’s execu-
tion of the n instructions of an atomic block as n separate state-machine substeps. In LA, how-
ever, we model those n instructions as a single state-machine substep. This reduces the num-
ber of states and transitions that need to be reasoned about, simplifying proofs using this state
machine.

A key advantage of using an atomic-substep state machine is that one can establish invariants by
showing that each atomic block preserves them, rather than having to show that each individual
instruction preserves them. Indeed, it allows one to use simple invariant predicates since those
predicates do not have to account for states in the middle of atomic blocks. For instance, suppose
that one introduces a ghost variable g with the intent of having some invariant relation between
it and a real variable x. One can do this by adding an assignment to g immediately following each
update to x and having this assignment be within the same atomic block. In this case, one may
want to prove that the intended relation between g and x is an invariant without having to specify
ungainly exceptions such as “except if the PC is at one of the points just before the assignment of
g.” Using an atomic-substep state machine allows this.

One caveat in the use of atomic substeps is that, unlike the set of instruction steps, the set of
atomic substeps is not necessarily finite. For instance, the code block

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:18 J. R. Lorch et al.

� �
explicit_yield {

while (insufficient(x)) {
x := x + 1;

}
}

� �

leads to infinitely many atomic substeps: one that increments x zero times, one that increments x
once, one that increments x twice, and so on. Having an infinite set of atomic substeps is problem-
atic since for many proofs we automatically generate one lemma per step, which would result in
an infinite number of lemmas.

For this reason, our atomic-substep state-machine generator sometimes breaks an atomic sub-
step into pieces and models each piece as a separate state-machine step. Breaking atomic substeps
into pieces means that if we want to prove an invariant, we have to show that it holds not only at
all yield points but also at all non-yielding break points. We use as break points every loop head
and method entry point that may be visited twice without an intervening yield point; this ensures
that the set of steps is finite. For example, the head of the while (insufficient(x)) loop in the
previous paragraph would be a break point since it can be visited twice without yielding.

The final intermediate state machine is HA, the atomic-substep state machine version of the
high-level state machine H . We construct it from H analogously to how we construct LA from L+.

For any state machine S , S and its atomic analog SA are equivalent. That is, they describe exactly
the same set of steps and, thus, the same set of behaviors. After all, every step of S completes any
atomic block it starts; thus, it can be partitioned into sequences corresponding to atomic substeps
from SA. Also, every atomic substep in SA is composed of a sequence of substeps from S ; thus, any
step in SA is a sequence of atomic substeps that can be broken down into a sequence of substeps
in S . Because S and SA are equivalent, they refine each other trivially: for every behavior of one,
there exists a behavior of the other (the same behavior) such that corresponding states refine each
other (because they are identical and the refinement relation is reflexive).

For this reason, proving refinement in either direction is fairly mechanical. For instance, to prove
that L+ refines LA, we generate a proof that every step in L+ can be partitioned into atomic substeps
in LA. (See Section 7 for an example.) Proving that HA refines H is even simpler: we generate a
proof that every atomic substep in HA can be divided into substeps in H .

The proof we generate that L refines L+ is also fairly mechanical. Thus, the only part of the
proof that is strategy specific is the refinement proof between LA and HA. This means that the
strategies, which we will discuss next, benefit from having to reason only about atomic substeps
and by having the low-level state augmented by the auxiliary state.

4.2 Specific Strategies

Our current implementation has eight strategies for eight different correspondence types. We now
describe them.

4.2.1 Reduction. Because of the complexity of reasoning about all possible interleavings of
statements in a concurrent program, a powerful simplification is to replace a sequence of state-
ments with an atomic block. A classic technique for achieving this is reduction [32], which
shows that one program refines another if the low-level program has a sequence of statements
R1,R2, . . . ,Rn ,N ,L1,L2, . . . ,Lm while the high-level program replaces those statements with a
single atomic action having the same effect. Each Ri (Li) must be a right (left) mover, that is, a
statement that commutes to the right (left) with any step of another thread.

An overly simplistic approach is to consider two programs to exhibit the reduction correspon-
dence if they are equivalent except for a sequence of statements in the low-level program that

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:19

Fig. 12. Reduction requiring the use of Cohen-Lamport generalization because the atomic block spans loop

iterations.

corresponds to an atomic block with those statements as its body in the high-level program. This
formulation would prevent us from considering cases in which the atomic blocks span loop itera-
tions (e.g., Figure 12).

Instead, Armada’s approach to sound extensibility gives us the confidence to use a generalization
of reduction, due to Cohen and Lamport [10], that allows steps that do not necessarily correspond
to consecutive statements in the program. It divides the states of the low-level program into a first
phase (states following a right mover), a second phase (states preceding a left mover), and no phase
(all other states). Programs may never pass directly from the second phase to the first phase, and
for every sequence of steps starting and ending in no phase, there must be a step in the high-level
program with the same aggregate effect.

Hence, our strategy considers two programs to exhibit the reduction correspondence if they are
identical except that some yield points in the low-level program are not yield points in the high-
level program. The strategy produces lemmas demonstrating that each Cohen-Lamport restriction
is satisfied; for example, one lemma establishes that each step ending in the first phase commutes
to the right with each other step. This requires generating many lemmas, one for each pair of steps
of the low-level program in which the first step in that pair is a right mover.

Our use of encapsulated nondeterminism (Section 4.1) greatly aids the automatic generation of
certain reduction lemmas. Specifically, we use it in each lemma showing that a mover commutes
across another step, as follows. Suppose that we want to prove commutativity between a step σi

by thread i that goes from s1 to s2 and a step σj from thread j that goes from s2 to s3. We must show
that there exists an alternate-universe state s ′2 such that a step from thread j can take us from s1

to s ′2 and a step from thread i can take us from s ′2 to s3. To demonstrate the existence of such an
s ′2, we must be able to automatically generate a proof that constructs such an s ′2. Fortunately, our
representation of a step encapsulates all non-determinism. Thus, it is straightforward to describe
such an s ′2 as NextState(s1,σj). This simplifies proof generation significantly, as we do not need
code that can construct alternative-universe intermediate states for arbitrary commutations. All
we must do is emit lemmas hypothesizing that NextState(NextState(s1,σj),σi) = s3, with one
lemma for each pair of step types. The automated theorem prover can typically dispatch these
lemmas automatically.

4.2.2 Rely-Guarantee Reasoning. Rely-guarantee reasoning [22, 30] is a powerful technique for
reasoning about concurrent programs using Hoare logic. Our framework’s generality lets us lever-
age this style of reasoning without relying on it as our only means of reasoning. Furthermore, our
level-based approach lets developers use such reasoning piecemeal. That is, they do not have to
use rely-guarantee reasoning to establish all invariants all at once. Rather, they can establish some
invariants and cement them into their program, that is, add them as enabling conditions in one
level so that higher levels can simply assume them.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:20 J. R. Lorch et al.

Fig. 13. In assume introduction, the high-level program has an extra enabling condition. The correspondence

might be proven by establishing that best_len ≥ ghost_best is an invariant and that ghost_best is

monotonically non-increasing.

Two programs exhibit the assume-introduction correspondence if they are identical except that
the high-level program has additional enabling constraints on one or more statements. The corre-
spondence requires that each added enabling constraint always holds in the low-level program at
its corresponding program position.

Figure 13 gives an example using a variant of our running traveling-salesman example. In this
variant, the correctness condition requires that we find the optimal solution. Thus, it is not rea-
sonable to simply replace the guard with * as we did in Figure 3. Instead, we want to justify the
racy read of best_len by arguing that the result it reads is conservative, that is, that at worst
it is an overestimate of the best length so far. We represent this best length with the ghost vari-
able ghost_best and somehow establish that best_len >= ghost_best is an invariant. We also
establish that between steps of a single thread, the variable ghost_best cannot increase; this is
an example of a rely-guarantee predicate [22]. Together, these establish that t >= ghost_best
always holds before the evaluation of the guard.

Benefits. The main benefit to using assume-introduction correspondence is that it adds enabling
constraints to the program being reasoned about. More enabling constraints means fewer behav-
iors to be considered while locally reasoning about a step.

Another benefit is that it cements an invariant into the program. That is, it ensures that what is
an invariant now will remain so even as further changes are made to the program as the developer
abstracts it. For instance, after proving refinement of the example in Figure 13, the developer
may produce a next-higher-level program by weakening the assignment t := best_len to
t := *. This usefully eliminates the racy read to the variable best_len but has the downside
of eliminating the relationship between t and the variable best_len. However, now that we
have cemented the invariant that t >= ghost_best, we do not need this relationship any more.
Now, instead of reasoning about a program that performs a racy read and then branches based
on it, we reason only about a program that chooses an arbitrary value and then blocks forever
if that value does not have the appropriate relationship to the rest of the state. Notice, however,
that assume-introduction can be used only if this condition is already known to always hold

in the low-level program at this position. Therefore, assume-introduction never introduces any
additional blocking in the low-level program.

Proof generation. The proof generator for this strategy uses rely-guarantee logic, letting the
developer supply standard Hoare-style annotations. The developer may annotate each method
with preconditions and postconditions, may annotate each loop with loop invariants, and may
supply invariants and rely-guarantee predicates.

One can add some such annotations directly to the Armada code in the high-level program
using notation borrowed from Dafny. For instance, one can write a precondition on a method
with a requires clause, a postcondition on a method with an ensures clause, a loop invariant on
a loop with an invariant clause, or a rely-guarantee predicate with a yield_predicate clause.

However, some annotations cannot be expressed easily in the Armada language and are best ex-
pressed using a Dafny expression referencing the state-machine representation of the state. Thus,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:21

one can add an annotation in the proof recipe by writing out that expression, referring to the
current state as s, the next state (if applicable) as s', and the current thread as tid. This lets one
describe a condition that always holds (chl_invariant), a condition that always holds before a spe-
cific instruction executes (chl_local_invariant), a rely-guarantee predicate (chl_yield_pred),
a method pre- or postcondition (chl_precondition or chl_postcondition), or a loop invariant
(chl_loop_modifies). For instance, if one wants to write that a precondition for calling method
M is that every other thread’s store buffer is empty, one could write:
� �

chl_precondition M OtherStoreBuffersEmpty
"forall other ::

other in s.s.threads && other != tid ==>
|s.s.threads[other]. storeBuffer| == 0"

� �

We use the word “modifies” in chl_loop_modifies because it can express not only an invariant
that holds at the beginning of each loop body but also a restriction on how the state can change
in the course of zero or more loop iterations. One can do this by referencing s', which refers to
the state at the end of zero or more loop iterations.

Our strategy generates one lemma for each program path that starts at a method’s entry and
makes no backward jumps. This is always a finite path set; thus, it only has to generate finitely
many lemmas. Each such lemma establishes properties of a state machine that resembles the low-
level program’s state machine but differs in the following ways. Only one thread ever executes
and it starts at the beginning of a method. Calling another method simply causes the state to be
havocked subject to its postconditions. Before evaluating the guard of a loop, the state changes
arbitrarily subject to the loop invariants. Between program steps, the state changes arbitrarily
subject to the rely-guarantee predicates and invariants.

The generated lemmas must establish that each step maintains invariants and rely-guarantee
predicates, that method preconditions are satisfied before calls, that method postconditions are sat-
isfied before method exits, and that loop invariants are reestablished before jumping back to loop
heads. This requires several lemmas per path: one for each invariant, one to establish preconditions
if the path ends in a method call, one to establish maintenance of the loop invariant if the path
ends just before a jump back to a loop head, and so on. The strategy uses these lemmas to establish
the conditions necessary to invoke a library lemma that proves properties of rely-guarantee logic.

The logic we use is complex; thus, the previous discussion should not be convincing that it is
sound or that we have correctly implemented it. Fortunately, as discussed earlier, all Dafny code
is verified. Thus, there is no need to trust the proof generator or our libraries.

4.2.3 TSO Elimination. We observe that even in programs using sophisticated lock-free mech-
anisms, most variables are accessed via a simple ownership discipline (e.g., “always by the same
thread” or “only while holding a certain lock”) that straightforwardly provides data race freedom
(DRF) [2]. It is well understood that x86-TSO behaves indistinguishably from sequential consis-
tency under DRF [5, 24]. Our level-based approach means that developers need not prove that they
follow an ownership discipline for all variables to get the benefit of reasoning about sequential
consistency. In particular, Armada allows a level at which the sophisticated variables use regular
assignments and the simple variables use TSO-bypassing assignments. Indeed, developers need
not even prove an ownership discipline for all such variables at once; they may find it simpler to
reason about those variables one at a time or in batches. At each point, they can focus on proving
an ownership discipline just for the specific variable(s) to which they are applying TSO elimina-
tion. As with any proof, if the developer makes a mistake (e.g., by not following the ownership
discipline), Armada reports a proof failure.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:22 J. R. Lorch et al.

Fig. 14. Variables in a program, followed by invocation, in a recipe, of the TSO-elimination strategy. The

part in quotation marks indicates under what condition the thread tid owns (has exclusive access to) the

variable x in state s: when the ghost variable lockholder refers to that thread.

A pair of programs exhibits the TSO-elimination correspondence if all assignments to a set of
locations L in the low-level program are replaced by TSO-bypassing assignments. Furthermore,
the developer supplies an ownership predicate (as in Figure 14) that specifies which thread (if any)
owns each location in L. It must be an invariant that no two threads own the same location at once
and no thread can read or write a location in L unless it owns that location. Any step releasing
ownership of a location must ensure the thread’s store buffer is empty, for example, by being a
fence.

4.2.4 Weakening. As discussed earlier, two programs exhibit the weakening correspondence if
they match except for certain statements in which the high-level version admits a superset of be-
haviors of the low-level version. The strategy generates a lemma for each statement in the low-level
program proving that, considered in isolation, it exhibits a subset of behaviors of the corresponding
statement of the high-level program.

4.2.5 Non-deterministic Weakening. A special case of weakening is when the high-level version
of the state transition is non-deterministic, with that non-determinism expressed as an existentially
quantified variable. For example, in Figure 4, the guard on an if statement is replaced by the *
expression indicating non-deterministic choice. For simplicity of presentation, that figure shows
the recipe invoking the weakening strategy. However, in practice, it would use non-deterministic

weakening.
Proving non-deterministic weakening requires demonstrating a witness for the existentially

quantified variable. Our strategy uses various heuristics to identify this witness and generate the
proof accordingly.

4.2.6 Combining. Two programs exhibit the combining correspondence if they are identical
except that an atomic block in the low-level program is replaced by a single statement in the
high-level program that has a superset of its behaviors. This is analogous to weakening in that it
replaces what appears to be a single statement (an atomic block) with a statement with a superset
of behaviors. However, it differs subtly because our model for an atomic block is not a single step
but rather a sequence of steps that cannot be interrupted by other threads.

The key lemma generated by the combining proof generator establishes that all paths from the
beginning of the atomic block to the end of the atomic block exhibit behaviors permitted by the
high-level statement. This involves breaking the proof into pieces, one for each path prefix that
starts at the beginning of the atomic block and does not pass beyond the end of it.

4.2.7 Variable Introduction. A pair of programs exhibits the variable-introduction correspon-
dence if they differ only in that the high-level program has variables (and assignments to those
variables) that do not appear in the low-level program. The high-level program may read the new
variables only in the right-hand side of one of the new assignments.

Our strategy for variable introduction creates refinement proofs for program pairs exhibiting
this correspondence. The main use of this is to introduce ghost variables that abstract the concrete

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:23

state of the program. Ghost variables are easier to reason about because they can be arbitrary types
and because they use sequentially consistent semantics.

Another benefit of ghost variables is that they can obviate concrete variables. Once the developer
introduces enough ghost variables and establishes invariants linking the ghost variables to the
concrete state, they can weaken the program logic that depends on concrete variables to depend
on ghost variables instead. Once program logic no longer depends on a concrete variable, the
developer can hide it, using the strategy described next.

4.2.8 Variable Hiding. A pair of programs 〈L,H 〉 exhibits the variable-hiding correspondence if
〈H ,L〉 exhibits the variable-introduction correspondence. In other words, the high-level program
H has fewer variables than the low-level program L, and L only uses those variables in assignments
to them. Our variable-hiding strategy creates refinement proofs for program pairs exhibiting this
correspondence. As alluded to in Section 4.2.7, this is useful to remove the concrete state — and,
thus, program complexity —once ghost variables have taken their place in program logic.

5 IMPLEMENTATION

Our implementation consists of a state-machine translator to translate Armada programs to state-
machine descriptions; a framework for proof generation and a set of tools fitting in that framework;
and a library of lemmas useful for invocation by proofs of refinement. It is open source and avail-
able at https://github.com/microsoft/armada.

5.1 Code Details

Since Armada is similar to Dafny, we implement the state-machine translator using a modified
version of Dafny’s parser and type-inference engine. After the parser and resolver run, our code
performs state-machine translation. In all, our state-machine translator is 13,531 new source lines
of code (SLOC [47]) of C#. Each state machine includes common Armada definitions of datatypes
and functions; these constitute 584 SLOC of Dafny.

Our proof framework is also written in C#. Its abstract syntax tree (AST) code is a modification
of Dafny’s AST code. We have an abstract proof generator that deals with general aspects of proof
generation (Section 4.1), and we have one subclass of that generator for each strategy. Our proof
framework is 5,370 SLOC of C#.

We also extend Dafny with a 1,805-SLOC backend that translates an Armada AST into C code
compatible with CompCertTSO [46], a version of CompCert [4] that ensures the emitted code
respects x86-TSO semantics.

Our general-purpose proof library is 6,850 SLOC of Dafny.

5.2 Version Differences

This article discusses version 0.2 of Armada, released in January 2021; our earlier paper [33] dis-
cusses version 0.1, released in April 2020. Notable ways in which the new version differs from the
old version include the following.

• The language has additional features atomic_exchange, compare_and_swap, global_view,
goto, if_undefined, $state, and universal_step_constraint (Section 3.1).

• Each store buffer entry includes the PC of the instruction that added the entry to simplify
proofs (Section 3.2.1).

• Instructions that cause undefined behavior are modeled as two different state machine tran-
sitions (Section 3.2.3).

• Selective state-machine revelation makes proofs more stable (Section 4.1.2).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

https://github.com/microsoft/armada

12:24 J. R. Lorch et al.

Table 1. Example Programs Used to Evaluate Armada

Name Description Impl. SLOC Proof SLOC # of proof layers
Barrier Barrier described by Schirmer and Cohen [43] as

incompatible with ownership-based proofs
53 263 2

Pointers Program using multiple pointers 29 13 1
Counter Shared counter used by Owicki and Gries [39] to

illustrate use of auxiliary variables
50 130 9

MCSLock Mellor-Crummey and Scott (MCS) lock [34] 42 688 6
Queue Lock-free queue from liblfds library [31, 35] 70 663 8

• Lemma customizations are inserted after useful lemma invocations and opaque-definition
revelations (Section 4.1.3).

• Intermediate proof levels include atomic levels LA and HA (Section 4.1.4).
• The rely-guarantee reasoning strategy allows four new types of recipe anno-

tation: chl_local_invariant, chl_precondition, chl_postcondition, and
chl_loop_modifies (Section 4.2.2).

• Variable hiding also permits hiding ghost variables (Section 4.2.8).
• A more compact heap model reduces the size of the common definitions in every state-

machine specification, thereby reducing the size of the trusted computing base.
• Generated state machine specifications and proofs are compatible with the latest Dafny re-

lease, version 3.2.0.

Proofs generated by version 0.2 are larger than those generated by version 0.1, largely due to
recent additions to improve proof stability. Two notable recent contributors to proof stability and
size are selective state-machine revelation (Section 4.1.2) and atomic intermediate proof levels
(Section 4.1.4).

6 EVALUATION

To show Armada’s versatility, we evaluate it on the programs in Table 1. Our evaluations show
that we can prove the correctness of programs not amenable to verification via ownership-based
methodologies [43], programs with pointer aliasing, shared counter between threads, lock imple-
mentations from previous frameworks [17], and libraries of real-world high-performance data
structures.

6.1 Barrier

The Barrier program includes a barrier implementation described by Schirmer and Cohen [43]:
“each processor has a flag that it exclusively writes (with volatile writes without any flushing) and
other processors read, and each processor waits for all processors to set their flags before contin-
uing past the barrier.” They give this as an example of what their ownership-based methodology
for reasoning about TSO programs cannot support. Like other uses of Owens’s publication id-
iom [37], this barrier is predicated on the allowance of races between writes and reads to the same
location.

The key safety property is that each thread does its post-barrier write after all threads do their
pre-barrier writes. We cannot use the TSO-elimination strategy since the program has data races;
thus, we prove as follows. A first level uses variable introduction to add ghost variables represent-
ing initialization progress and which threads have performed their pre-barrier writes. A second
level uses rely-guarantee to add an enabling condition on the post-barrier write that all pre-barrier
writes are complete. This condition implies the safety property.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:25

One author took ∼3 days to write the proof levels, mostly to write invariants and rely-guarantee
predicates involving x86-TSO reasoning. Due to the complexity of this reasoning, the original
recipe had many mistakes; output from verification failures aided discovery and repair.

The implementation is 53 SLOC. The first proof level uses 10 additional SLOC for new variables
and assignments, and 5 SLOC for the recipe; Armada generates 22,715 SLOC of proof. The next
level uses 38 additional SLOC for enabling conditions, loop invariants, preconditions, and postcon-
ditions; 109 SLOC of Dafny for lemma customization; and 101 further SLOC for the recipe, mostly
for invariants and rely-guarantee predicates. Armada generates 98,003 SLOC of proof.

We use this program for an elaborated example of Armada’s use in Section 7.

6.2 Pointers

The Pointers program writes via distinct pointers of the same type. The correctness of our refine-
ment depends on the static pointer analysis in our region-based reasoning (Section 4.1.1), proving
that these different pointers do not alias. Specifically, we prove that the program assigning values
via two pointers refines a program assigning those values in the opposite order. The automatic
pointer analysis reveals that the pointers cannot alias and, thus, that the reversed assignments
result in the same state. The program is 29 SLOC, the recipe is 13 SLOC, and Armada generates
6,997 SLOC of proof.

6.3 Counter

The Counter program is a variant of a program used by Owicki and Gries [39] to illustrate the use
of auxiliary variables to prove correctness of concurrent programs. It creates a global counter and
increments it in two concurrent threads. Those threads acquire a lock before updating the counter.

Our proof establishes that, regardless of the execution order, the final counter always equals two.
Following Owicki and Gries, we introduce an auxiliary ghost variable representing each thread’s
contribution to the global counter value; we use the variable-introduction strategy for this key
step. The complete proof uses most of our proof strategies in nine levels, including reduction, TSO
elimination, and rely-guarantee reasoning. The implementation takes 50 SLOC, the recipes use
130 SLOC, and Armada generates 169,270 SLOC of proof.

6.4 MCSLock

The MCSLock program includes a lock implementation developed by Mellor-Crummey and
Scott [34]. It uses compare-and-swap instructions and fences for thread synchronization. It ex-
cels at fairness and cache-awareness by having threads spin on their own locations. We use it to
demonstrate that our methodology allows modeling locks hand-built out of hardware primitives,
as done for CertiKOS [25].

Our proof establishes the safety property that statements between acquire and release can be
reduced to an atomic block. For simplicity, we use a large array to simulate a dynamic linked list at
the implementation level. This way, we can focus on proving the ownership of the lock. Our refine-
ment proof uses six transformations, including the following two notable ones. The fifth transfor-
mation proves that both acquire and release properly maintain the ownership represented by
ghost variables. For example, acquire secures ownership and release returns it. We prove this
by introducing enabling conditions and annotating the program. The last transformation reduces
statements between acquire and release into a single atomic block through reduction.

The implementation is 42 SLOC. Level 1 keeps 42 SLOC and uses 12 SLOC for its recipe. Level
2 adds 16 SLOC to the program and uses 4 SLOC for its recipe. Level 3 keeps 58 SLOC as level 2
and uses 8 SLOC for its recipe. Level 4 removes 3 SLOC from the program and uses 4 SLOC for

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:26 J. R. Lorch et al.

its recipe. Level 5 adds 19 SLOC to the program and uses 145 SLOC for its recipe. Level 6 adds
2 SLOC to the program and uses 21 SLOC for its recipe. Levels 5 and 6 collectively use a further
457 SLOC for proof customization. In comparison, the authors of CertiKOS verify an MCS lock via
concurrent certified abstraction layers [25] using 3.2K LOC to prove the safety property.

6.5 Queue

The Queue program includes a lock-free queue from the liblfds library [31, 35], used at AT&T, Red
Hat, and Xen. We use it to show that Armada can handle a practical, high-performance lock-free
data structure.

Proof. Our goal is to prove that the enqueue and dequeue methods behave like abstract versions
in which enqueue adds to the back of a sequence and dequeue removes the first entry of that
sequence, as long as at most one thread of each type is active. Our proof introduces an abstract
queue, uses an inductive invariant and weakening to show that logging using the implementation
queue is equivalent to logging using the abstract queue, then hides the implementation. This leaves
a simpler enqueue method that appends to a sequence and a dequeue method that removes and
returns its first element.

It took ∼6 person-days to write the proof levels. Most of this work involved identifying the
inductive invariant to support weakening of the logging using implementation variables to logging
using the abstract queue.

The implementation is 70 SLOC. We use eight proof transformations, the fourth of which does
the key weakening described in the previous paragraph. The first three proof transformations
introduce the abstract queue using recipes with a total of 12 SLOC. The fourth transformation
uses a recipe with 67 SLOC, including proof customization, and an external file with 522 SLOC to
define an inductive invariant and helpful lemmas. The final four levels hide the implementation
variables using recipes with a total of 16 SLOC, leading to a final layer with 46 SLOC. From all of
our recipes, Armada generates 197,968 SLOC of proof.

Performance. We measure performance in Docker on a machine with an Intel Xeon E5-2687W
CPU running at 3.10 GHz with 8 cores and 32 GB of memory. We use GCC 6.3.0 with -O2 and
CompCertTSO 1.13.8255. We use liblfds version 7.1.1 [31]. We run (1,000 times) its built-in bench-
mark for evaluating queue performance, using queue size 512. The benchmark runs one thread
that repeatedly enqueues and another thread that repeatedly dequeues from a shared queue, with
5 million operations of warmup followed by 50 million operations from which throughput is com-
puted.

Our Armada port of liblfds’s lock-free queue uses modulo operators, instead of bitmask opera-
tors, to avoid invoking bit-vector reasoning. To account for this, we also measure liblfds-modulo,
a variant we write with the same modifications.

To account for the maturity difference between CompCertTSO and modern compilers, we also
report results for the Armada code compiled with GCC. Such compilation is not sound, since GCC
does not necessarily conform to x86-TSO. We include these results only to give an idea of how much
performance loss is due to using CompCertTSO. To constrain GCC’s optimizations and thereby
make the comparison somewhat reasonable, we insert the same barriers liblfds uses before giving
GCC our generated ClightTSO code.

Figure 15 shows our results. The Armada version compiled with CompCertTSO achieves 70% of
the throughput of the liblfds version compiled with GCC. Most of this performance loss is due to
the use of modulo operations rather than bitmasks and the use of a 2013-era compiler rather than
a modern one. After all, when we remove these factors, we achieve virtually identical performance
(99% of throughput). This is not surprising since the code is virtually identical.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:27

Fig. 15. These are performance results for liblfds’s lock-free queue versus the corresponding code written

in Armada. The Armada version and our variant liblfds-modulo use modulo rather than bitmask operations.

Each data point is the mean of 1,000 trials; error bars indicate 95% confidence intervals.

Fig. 16. Refinement relation R for barrier program.

7 SAMPLE PROOF

To more concretely illustrate the use of Armada to prove program properties, we now present a
detailed discussion of the barrier program in Section 6.1 and the proof that it refines a version
of the program annotated with extra ghost variables. Those ghost variables keep track of which
threads have had their barrier entries initialized, whether all threads have had their barrier entries
initialized, and which threads have passed the barrier.

As described in Section 3.1.3, the first thing the developer writes is the refinement relation
R. This constrains what it means for an implementation to refine a specification. Here, we use
a log prefix relationship: an implementation state refines a specification state if the log of the
implementation’s externally visible events so far is a prefix of that of the specification. In other
words, the implementation’s externally visible behavior must always be a prefix of a behavior
permitted by the specification.

Figure 16 gives the Armada code describing this relation. The ghost variable log describes a
sequence of all of the values printed by the program. Because we consider the program stopping to
be an externally visible event, our refinement relation requires more than just a prefix relationship
for log: if the implementation has stopped, then its log must match that of the specification and
it must have stopped for the same reason.

The next step for the developer is to write the implementation, as shown in Figure 17. The
implementation level is marked as :concrete to indicate that this level is intended to be compiled

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:28 J. R. Lorch et al.

Fig. 17. Implementation of barrier program.

and run. The Armada tool ensures that the level uses only compilable features of the language. As
an exception, the print_uint32 method is an external method, meant to be provided by a trusted
library. We model it as appending the printed value to the log, and implement it in C with:
� �
void print_uint32(uint32 i)
{

printf("%lu\n", i);
}
� �

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:29

The implementation of our barrier program works as follows. The main thread initializes the
barrier array with zeros, then uses a memory-fence instruction fence to flush these initial ze-
ros to all cores. It then creates worker threads, each of which writes to the console, sets its array
element to 1, loops waiting for all elements of the array to be non-zero, then writes more to the con-
sole. Since the workers rely solely on x86-TSO semantics, they perform only normal assignments
and no fence instructions.

Figure 18 shows the first level of the proof, level 1. Compared with the implementation level 0,
it introduces several new ghost variables useful in proving the safety property:

• The barrier_initialized array indicates, for each thread, whether its barrier entry has
been initialized to 0.

• The all_initialized Boolean indicates whether all threads have had their barrier entries
initialized to 0.

• The threads_past_barrier array indicates, for each thread, whether it has passed the bar-
rier.

To prove this, the developer simply writes:
� �
proof ImplRefinesL1
{

refinement Impl L1
var_intro barrier_initialized , all_initialized , threads_past_barrier

}
� �

The Armada tool takes care of generating the proof.
The generated proof works as follows. As discussed in Section 4.1.4, it contains intermediate

state machines L+, LA, and HA and a proof that L refines L+, L+ refines LA, LA refines HA, and HA

refines H .
To prove that L refines L+, the proof makes use of a library GenericArmadaPlus.i.dfy

that defines the predicate RequirementsForSpecRefinesPlusSpec and the lemma
lemma_SpecRefinesPlusSpec. The former describes the conditions under which the latter
can establish that one specification refines the other because they’re related by “plus.” Figure 19
gives more detail about these elements of the generic proof library. Using this library in this case
is quite straightforward, since the requirements can be easily proven by automated verification
with little annotation. Figure 20 shows the Dafny code generated to invoke the library and thereby
prove refinement.

We prove that L+ refines LA similarly. The library LiftToAtomic.i.dfy defines
RequirementsForLiftingToAtomic and lemma_SpecRefinesAtomicSpec. The former de-
scribes the conditions under which the latter can establish refinement.

The trickiest part of the proof is that LA refines HA. It is tricky because the high-level program
contains instructions (the introduced assignments) that do not exist in the low-level program. The
library here requires us to prove that the atomic substeps in LA are introducibly liftable to atomic
substeps in HA. That is, whenever we take an atomic substep in LA, we can always either execute
a corresponding substep in HA (lifting the substep from the low level to the high level) or execute
a substep that exists only in HA (executing an introduced assignment).

Our formal specification for the introducible liftability condition is in Figure 21. It states that if:
(1) the invariant inv is satisfied in low-level state ls, (2) the lifting relation relation holds between
ls and high-level state hs, and (3) one takes an atomic substep lpath in LA from ls to ls' (defined
as lasf.path_next(ls, lpath, tid)), then one of two conditions must hold. The first condition
is that there exists a corresponding step hpath inHA such that relation(ls', hs') holds, where
hs' is the result of taking step hpath from hs (i.e., hasf.path_next(hs, hpath, tid)). The other

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:30 J. R. Lorch et al.

Fig. 18. Level 1 of barrier proof, introducing ghost variables.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:31

Fig. 19. Part of the generic proof library establishing conditions under which a level L can be proven to refine

a level L+.

condition is that there exists an “introduced” step hpath in HA such that relation(ls, hs')
holds and hs' is less than hs by some given progress measure progress_measure.

The invariant inv, the state relation relation, and the progress measure progress_measure
are arbitrary and customizable. That is, the caller of the library may set these as desired so long
as inv can be proven to be an invariant of the program and relation implies R. In our case, the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:32 J. R. Lorch et al.

Fig. 20. Invocation of the library lemma to prove that the barrier implementation level L refines the corre-

sponding L+.

developer has not expressed any custom invariants; thus, the invariant inv that we generate is just
the default “no thread has a null thread ID.” The relation that we generate is LiftingRelation, as
given in Figure 22. Here, most of the code is boilerplate that we put in every variable-introduction
proof. The exception is the predicate IsReturnSite_H, which is customized to describe all of the
return sites of this particular HA program. For progress_measure, we always generate the code
in Figure 23.

Proving the introducible liftability condition requires, for each step in LA, a lemma ensuring that
one of the two conditions holds. Figure 24 shows one such lemma for a particularly tricky point
in LA. Here, we consider the case that the level LA program is about to execute the i := 0 instruc-
tion immediately following the fence. There are three possibilities to consider. If the program at
level HA is also immediately following the fence, then we show that we can introduce an assign-
ment to threads_past_barrier and that this decreases the progress measure. If the program at
level HA is just past that assignment, we instead show that we can introduce an assignment to
all_initialized and that this decreases the progress measure. The only other case is that the
program at level HA has done both assignments, in which case we show that we can lift the assign-
ment i := 0 in LA to the corresponding assignment inHA. This lemma, and the lemmas it depends
on, are cumbersome and tedious to write. Thus, it is fortunate that we generate it all automatically.

Once we have proven that LA refines HA, we prove that HA refines H . The approach here is
similar to showing that L+ refines LA: we must satisfy the requirements of a library dedicated to
this type of proof.

Finally, we put it all together into a final lemma establishing that L (in this case, the barrier
implementation) refines H (the level 1 program that introduces the three variables). This is done
by invoking all of the lemmas we have built, plus one final lemma that establishes four-way transi-
tivity of refinement. This final lemma, shown in Figure 25, demonstrates what we set out to prove:
that L refines H using the given refinement relation R.

8 RELATED WORK

Concurrent separation logic [36] is based on unique ownership of heap-allocated memory via
locking. Recognizing the need to support flexible synchronization, many program logics inspired

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:33

Fig. 21. Introducible liftability condition.

by concurrent separation logic have been developed to increase expressiveness [11, 13, 14, 23, 28].
We are taking an alternative approach of refinement over small-step operational semantics that
provides considerable flexibility at the cost of low-level modeling whose overhead we hope to
overcome via proof automation.

CCAL and concurrent CertiKOS [18, 19] propose certified concurrent abstraction layers. Cspec [6]
also uses layering to verify concurrent programs. Layering means that a system implementation
is divided into layers, each built on top of the other, with each layer verified to conform to an
API and specification assuming that the layer below conforms to its API and specification. Com-
position rules in CCAL ensure end-to-end termination-sensitive contextual refinement properties
when the implementation layers are composed together. Armada does not (yet) support layers: all
components of a program’s implementation must be included in level 0. Thus, Armada currently
does not allow independent verification of one module whose specification is then used by an-
other module. Also, Armada proves properties about programs only while CCAL supports general

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:34 J. R. Lorch et al.

Fig. 22. Lifting relation used to establish that the implementation refines level 1 where variables are

introduced.

Fig. 23. Definition of progress measure.

composition, such as the combination of a verified operating system, thread library, and program.
On the other hand, CCAL uses a strong memory model disallowing all data races, while Armada
uses the x86-TSO memory model and, thus, can verify programs with benign races and lock-free
data structures. As we shall discuss in Section 9, Armada’s level-based approach can be considered
as a complement to abstraction layers.

Recent work [7] uses the Iris framework [27] to reason about a concurrent file system. Like Cer-
tiKOS and Cspec, this approach involves a significant amount of manual effort, making developers
write their code in a particular style that may limit both performance optimization opportunities
and the ability to port existing code.

QED [15] is the first verifier for functional correctness of concurrent programs to incorporate
reduction for program transformation and to observe that weakening atomic actions can eliminate
conflicts and enable further reduction arguments. CIVL [21] extends and incorporates these ideas
into a refinement-oriented program verifier based on the framework of layered concurrent pro-
grams [26]. (Layers in CIVL correspond to levels in Armada, not layers in CertiKOS and Cspec.)
Armada improves upon CIVL by providing a flexible framework for soundly introducing new me-
chanically verified program transformation rules; CIVL’s rules are proven correct only on paper.
CSim2 [42] is a verification framework that brings Hoare Logic reasoning and program refine-
ment together. Like the assume-introduction strategy (Section 4.2.2) in Armada, CSim2 uses rely-
guarantee reasoning to achieve modular verification of concurrent programs. However, Armada
supports many other reasoning strategies, such as reduction and region-based reasoning. Armada
is also extensible to new techniques that may be invented in the future.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:35

Fig. 24. Proof establishing that a barrier implementation step can be introducibly lifted to level when the

low-level program has just completed the fence instruction.

Fig. 25. Final lemma establishing that L (the barrier implementation) refines H (the level 1 program that

introduces the three ghost variables).

Unlike Armada, VCC [9] is designed to verify existing concurrent C code in situ. Rather than
using a simple, low-level state machine model based on x86-TSO memory semantics, as in Armada,
VCC assumes a sequentially consistent memory model and bakes in a notion of ownership and
object invariants for reasoning about aliasing. We soundly reconstruct some of these techniques
in our reduction strategy (Section 4.2.1). Later VCC-related work [43] proposes moving to a TSO
memory model but maintaining ownership information in the ghost state. This brings them closer
to Armada’s memory model, but because they rely on ownership as the primary concurrency
reasoning tool, they cannot handle correct programs with benign races, for example, instances
in which correctness relies on the fact that an address is written to only by a single writer, and
the values written are monotonic. Our Barrier case study (Section 6.1) is one such example. It is
unclear whether this proposed memory model was incorporated into the VCC tool.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:36 J. R. Lorch et al.

9 DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of the current design and prototype of Armada and
suggest items for future work.

Armada currently supports the x86-TSO memory model [38]. Thus, it is not directly applicable to
other architectures, such as ARM and Power. Apart from the prevalence of the x86 architecture [20],
we believe that x86-TSO is a good first step as it illustrates how to account for weak memory models
while still being simple enough to keep the proof complexity manageable. ARM and Power have
even weaker memory models than x86-TSO, which will likely result in more complex invariants
as the developer tries to establish refinement to a stronger semantics, like our TSO-bypassing
assignments. While we expect the invariants to be more complicated, the principle behind such
proofs is still the same: the developer must show some type of ownership of a variable in order to
show refinement to the stronger semantics.

Armada currently supports verification of a whole program only in contrast to CCAL’s
contextual-refinement-based layer system. We have plans to improve verification modularity by
supporting modular verification against layer APIs, similar to those in CCAL. In CCAL, L �R M : H
denotes that module M running on top of underlay L faithfully implements the specification in
overlay H . CCAL further supports composition of layers with composition rules such as the verti-
cal composition rule.

Vertical Composition
L1 �R1 M1 : L2 L2 �R2 M2 : L3

L1 �R1◦R2 M1 ⊕ M2 : L3

CCAL advocates for dividing programs into tiny modules such that the verification of individual
modules is straightforward, while complex behaviors of a whole system emerge as all of the layers
compose together. For example, CertiKOS divides an allocation table implementation into layers,
one implementing a getter/setter interface, one implementing page allocation logic, and one imple-
menting a locking mechanism. To do this in Armada, one would include the entire implementation
in level 0, then abstract parts of the program one at a time in the same order as CCAL.

Furthermore, it is worth pointing out that Armada’s level-based approach can be seen as a spe-
cial case of CCAL’s layer calculus. If a specification is expressed in the form of a program, then
Armada’s refinement between lower-level L and higher-level H with respect to refinement rela-
tion R can be expressed in the layer calculus as L �R ∅ : H . That is, without introducing any
additional implementation in the higher layer, the specification can nevertheless be transformed
between the underlay and overlay interfaces. Indeed, the authors of concurrent CertiKOS some-
times use such ∅-implementation layers when a complex layer implementation cannot be further
divided into smaller pieces [19, 25]. This phenomenon manifests primarily in verification of locking
mechanisms, in which fine-grained concurrency prevents division into smaller modules. Proofs of
refinement for these modules are tedious and complicated. With support of modular verification,
Armada may help here with its rich set of concurrency-reasoning techniques and its level-based
refinement framework.

Armada uses Dafny to verify all proof material that we generate. As such, the trusted computing
base (TCB) of Armada includes not only the compiler and the code for extracting state machines
from the implementation and specification but also the Dafny toolchain. This toolchain includes
Dafny, Boogie [3], Z3 [12], and our script for invoking Dafny.

Armada uses the CompCertTSO compiler, whose semantics is similar, but not identical, to Ar-
mada’s. In particular, CompCertTSO represents memory as a collection of blocks, while Armada
adopts a hierarchical forest representation. Additionally, in CompCertTSO, the program is mod-
eled as a composition of a number of state machines—one for each thread—alongside a TSO state

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:37

machine that models global memory. Armada, on the other hand, models the program as a single-
state machine that includes all threads and the global memory. We currently assume that the
CompCertTSO model refines our own. It is future work to formally prove this by demonstrating
an injective mapping between the memory locations and state transitions of the two models.

The current prototype of Armada uses Dafny’s finite sequences to reason about behaviors. As
such, it can prove safety but not liveness properties. This is not a fundamental limitation, however.
Instead of sequences, one can use Dafny’s imaps (infinite maps), to emulate an infinite sequence by
mapping an integer i to the ith state in a behavior. Even with such a change in place, though, we
still expect liveness properties to be challenging to establish. Such properties have traditionally
been difficult to prove, even in non-concurrent systems. In the Armada context, the developer
would have to further contend with the complexity incurred by concurrency as well as having to
show that wait_until statements eventually return.

Armada currently supports state transitions involving only the current state, not future states.
Hence, Armada can encode history variables but not prophecy variables [1]. Note that Armada
proofs manifest the entire behavior as a finite sequence of states, thus allowing the proof to reason
about future states, if needed. To fully support prophecy variables, however, Armada must be
expanded to allow invariants to be expressed over an entire behavior, rather than a single state, as
the current prototype does.

Since we consider properties of single behaviors only, we cannot verify hyperproperties [8].
However, we can verify safety properties that imply hyperproperties, such as the unwinding con-
ditions that Nickel uses to prove noninterference [41, 44].

Finally, the current prototype of Armada requires developers to manually define all layers, which
requires an unfortunate amount of copy-paste overhead. We believe that much of this overhead
can be avoided by reducing the number of layers and by making each layer more concise. To
reduce the number of layers, one can introduce composite transformations, such as those used
in CIVL [21]. In CIVL, each layer transition defines five mini-transitions in a certain order. First,
the tool performs reduction, followed by variable introduction. Then, it proves invariants and
does variable hiding. Finally, it establishes new atomic action specifications. Such composite layer
definitions could reduce the number of layers that the developer has to write. To further reduce
the developer’s effort, layers can be defined more concisely by expressing them as a delta—for
example, a patch—from the previous layer. This would allow layers to be introduced with very
little developer effort while also enabling changes at an early layer to automatically propagate to
all subsequent layers.

10 CONCLUSION

Via a common, low-level semantic framework, Armada supports a panoply of powerful strategies
for automated reasoning about memory and concurrency, even while giving developers the flexi-
bility needed for performant code. Armada’s strategies can be soundly extended as new reasoning
principles are developed. Our evaluation on five case studies demonstrates that Armada is a prac-
tical tool that can handle a diverse set of complex concurrency primitives as well as real-world,
high-performance data structures.

ACKNOWLEDGMENTS

The authors are grateful to Ronghui Gu, the shepherd of our PLDI’20 paper of which this is an
extended version, and to the anonymous PLDI’20 reviewers and TOPLAS referees for their valuable
feedback that greatly improved the paper. We also thank Tej Chajed, Chris Hawblitzel, and Nikhil
Swamy for reading early drafts of the paper and providing useful suggestions, and Rustan Leino
for early discussions and for helpful Dafny advice and support.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

12:38 J. R. Lorch et al.

REFERENCES

[1] Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2
(May 1991), 253–284.

[2] Sarita V. Adve and Mark D. Hill. 1990. Weak ordering—a new definition. In Proceedings of International Symposium on

Computer Architecture (ISCA’90). 2–14.
[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A modular

reusable verifier for object-oriented programs. In Proceedings of Formal Methods for Components and Objects (FMCO’05).

364–387.
[4] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal verification of a C compiler front-end. In Proceedings

of International Symposium on Formal Methods (FM’06). 460–475.
[5] Gérard Boudol and Gustavo Petri. 2009. Relaxed memory models: An operational approach. In Proceedings of ACM

Symposium on Principles of Programming Languages (POPL’09). 392–403.
[6] Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich. 2018. Verifying concurrent software using

movers in CSPEC. In Proceedings of Symposium on Operating Systems Design and Implementation (OSDI’18). 306–322.
[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe

systems with Perennial. In Proceedings of ACM Symposium on Operating Systems Principles (SOSP’19). 243–258.
[8] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010),

1157–1210.
[9] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, MichałMoskal, Thomas Santen, Wolfram Schulte,

and Stephan Tobies. 2009. VCC: A practical system for verifying concurrent C. In Proceedings of the Conference on

Theorem Proving in Higher Order Logics. 23–42.
[10] Ernie Cohen and Leslie Lamport. 1998. Reduction in TLA. In Concurrency Theory (CONCUR’98). 317–331.
[11] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstrac-

tion. In Proceedings of European Conference on Object-Oriented Programming (ECOOP’14). 207–231.
[12] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’08). 337–340.
[13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:

Compositional reasoning for concurrent programs. In Proceedings of ACM Symposium on Principles of Programming

Languages (POPL’13). 287–300.
[14] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-guarantee reasoning. In Proceedings

of European Symposium on Programming (ESOP). 363–377.
[15] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In Proceedings of ACM Symposium

on Principles of Programming Languages (POPL’09). 2–15.
[16] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2004. Exploiting purity for atomicity. In Proceedings of ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’04). 221–231.
[17] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng,

Haozhong Zhang, and Yu Guo. 2015. Deep specifications and certified abstraction layers. In Proceedings of ACM Sym-

posium on Principles of Programming Languages (POPL’15). 595–608.
[18] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. Cer-

tiKOS: An extensible architecture for building certified concurrent OS kernels. In Proceedings of USENIX Conference

on Operating Systems Design and Implementation (OSDI’16). 653–669.
[19] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David

Costanzo, and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In Proceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’18). 646–661.
[20] Tom’s Hardware. 2021. Market share of the x86 architecture. Retrieved March 15, 2022 from https://www.

tomshardware.com/news/amds-cpu-market-share-and-revenue-jump-as-apples-m1-arm-chips-rise.
[21] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and modular refinement reasoning

for concurrent programs. In Proceedings of Computer Aided Verification (CAV). 449–465.
[22] C. B. Jones. 1983. Tentative steps toward a development method for interfering programs. ACM Transactions on Pro-

gramming Languages and Systems 5, 4 (Oct. 1983), 596–619.
[23] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming

28, e20 (2018).
[24] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-

memory concurrency. In Proceedings of ACM Symposium on Principles of Programming Languages (POPL’17). 175–189.
[25] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. 2017. Safety and liveness of MCS lock—layer by layer. In

Proceedings of Asian Symposium on Programming Languages and Systems (APLAS’17). 273–297.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

https://www.tomshardware.com/news/amds-cpu-market-share-and-revenue-jump-as-apples-m1-arm-chips-rise

Armada: Automated Verification of Concurrent Code with Sound Semantic Extensibility 12:39

[26] Bernhard Kragl and Shaz Qadeer. 2018. Layered concurrent programs. In Proceedings of International Conference on

Computer Aided Verification (CAV’18). 79–102.
[27] Robbert Krebbers, Ralf Jung, Ales̆ Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The essence of

higher-order concurrent separation logic. In Proceedings of European Symposium on Programming (ESOP’17). 696–723.
[28] Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the flow: Compositional abstractions for

concurrent data structures. Proceedings of the ACM Symposium on Programming Languages 2 (POPL’18). 37:1–37:31.
[29] K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for functional correctness. In Proceedings of Conference

on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10). 348–370.
[30] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent program

transformations. In Proceedings of ACM Symposium on Principles of Programming Languages (POPL’12). 455–468.
[31] LibLFDS. 2019. LFDS 7.11 queue implementation. Retrieved March 15, 2022 from https://github.com/liblfds/liblfds7.1.

1/tree/master/liblfds7.1.1/liblfds71\1/src/lfds711_queue_bounded_singleproducer_singleconsumer. (Nov. 2019).
[32] Richard J. Lipton. 1975. Reduction: A method of proving properties of parallel programs. Communications of the ACM

18, 12 (Dec. 1975), 717–721.
[33] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upamanyu Sharma, James R. Wilcox, and

Xueyuan Zhao. 2020. Armada: Low-effort verification of high-performance concurrent programs. In Proceedings of

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’20). 197–210.
[34] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for scalable synchronization on shared-memory

multiprocessors. ACM Transactions on Computer Systems 9, 1 (Feb. 1991), 21–65.
[35] Maged M. Michael and Michael L. Scott. 2006. Simple, fast, and practical non-blocking and blocking concurrent queue

algorithms. In Proceedings of ACM Symposium on Principles of Distributed Computing (PODC’06). 267–275.
[36] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1–3 (2007),

271–307.
[37] Scott Owens. 2010. Reasoning about the implementation of concurrency abstractions on x86-TSO. In Proceedings of

European Conference on Object-Oriented Programming. 478–503.
[38] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model: x86-TSO. In Proceedings of Theorem

Proving in Higher Order Logics (TPHOLs’09). 391–407.
[39] Susan Owicki and David Gries. 1976. Verifying properties of parallel programs: An axiomatic approach. Communica-

tions of the ACM 19, 5 (May 1976), 279–285.
[40] Shaz Qadeer. 2019. Private communication. (2019).
[41] John Rushby. 1992. Noninterference, Transitivity, and Channel-control Security Policies. Technical Report CSL-92-02,

SRI International. (1992).
[42] David Sanan, Yongwang Zhao, Shang-Wei Lin, and Liu Yang. 2021. CSim2: Compositional top-down verification of

concurrent systems using rely-guarantee. ACM Transactions on Programming Languages and Systems 43, 1, Article 2
(Feb. 2021), 46 pages.

[43] Norbert Schirmer and Ernie Cohen. 2010. From total store order to sequential consistency: A practical reduction
theorem. In Proceedings of Interactive Theorem Proving (ITP’10). 403–418.

[44] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and Xi Wang. 2018. Nickel:
A framework for design and verification of information flow control systems. In Proceedings of USENIX Symposium

on Operating Systems Design and Implementation (OSDI’18). 287–305.
[45] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of ACM Symposium on Principles of

Programming Languages (POPL’96). 32–41.
[46] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-

memory concurrency and verified compilation. In Proceedings of ACM Symposium on Principles of Programming Lan-

guages (POPL’11). 43–54.
[47] David A. Wheeler. 2004. SLOCCount. Software distribution. (2004). Retrieved March 15, 2022 from http://www.

dwheeler.com/sloccount/.

Received April 2021; revised October 2021; accepted November 2021

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 12. Publication date: May 2022.

https://github.com/liblfds/liblfds7.1.1/tree/master/liblfds7.1.1/liblfds71\1/src/lfds711_queue_bounded_singleproducer_singleconsumer
http://www.dwheeler.com/sloccount/

