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Abstract—Fractal dimension is a popular parameter for explaining certain phenomena and for describing
natural textures. The problem of estimating the fractal dimension of a profile or an image is more difficult
and devious than theory suggests. This paper studies the accuracy and robustness of two common estimators
offractal dimension (box counting and the variation method) using two types of data (Brownian and Takagi).
Poor results are demonstrated from applying theory directly, called naive estimation. Data is then interpreted
in the most optimistic way possible by matching the estimator to the known fractal dimension. Experiments
quantify the effects of resolution, or fineness of sampling, and quantization, or rounding of sampled values.
Increasing resolution enhances the estimators when true dimension, D, is large, but may, possibly due to
quantization effect, degrade estimators when D is small. Quantization simply causes shifts in estimates. The
results suggest that one should not place much reliance in the absolute value of a fractal estimate, but that
the estimates do vary monotonically with D and might be useful descriptors in tasks such as image

segmentation and description.

Fractal dimension Image description Estimation of dimension Brownian surface

1. INTRODUCTION

Fractal dimension has become ubiquitous in science
ever since Mandelbrot’s provocative book appeared®
and the fantastic images of fractal sets became popular.®’
In addition to being a source of pretty pictures, fractal
geometry has been used to characterize the behavior
of chaotic systems,® to reveal new insights into mathe-
matics,'”) to define models of natural objects," and to
suggest models in the life sciences.”® Fractals have
been applied to the general area of image analysis as
ameans for compressing images,® as a vehicle for seg-
menting images,® and as a descriptor of radiographic
mages.” The list of applications could continue for
several pages.

Many applications of fractal concepts rely on the
ability to accurately estimate the fractal dimensions of
objects from samples, especially when chaotic, non-
mear systems are being characterized or when images
are being compressed. The issues of resolution and
quantization are continually encountered when trying
10 validate and compare various algorithms for esti-
matng the fractal dimension of images. Each algorithm
h'mimating fractal dimension involves parameters
which must be chosen heuristically but which can have
3 dramatic effect on the results. Little hard evidence
€usts to quantify the influences of these factors on the
Kx:urag of estimates. In our experience, simply pro-
Framming an estimator from theory does not usually
Provide good estimates. The repeated failure of all
Sumators of fractal dimension on certain images which
“ere supposed to be pure fractal images led to the
an that became the title of this paper and to the
u""m& related questions. Are there subtle, but in-

herent difficulties that will always frustrate the esti-
mation of fractal dimension? Are there enough practi-
cal difficulties in this estimation problem to render it
unsolvable in practice? We report on some experiments
that contribute to answering such questions with em-
phasis on resolution and quantization.

This paper focuses on fractal images and fractal
profiles. Kube and Pentland®-® have studied the con-
ditions under which imaging produces a fractal surface.
Certain types of medical images are good candidates
for fractal description because of the way in which the
images are collected.’? Fractal dimension has served
as the vehicle for segmenting an image,'® which means
separating the image into its constituent parts and label-
ing them. Estimates of fractal dimension alone are
not normally sufficient to segment an image; additional
features such as lacunarities, signatures, variances, and
non-fractal features need to be added to segment certain
types of images, such as images containing natural
textures.(* 1715

The inaccurate estimation of fractal dimension does
not preclude an estimator from being an effective agent
in image segmentation. The estimator should, however,
vary monotonically with true fractal dimension so that
one can treat an estimator of fractal dimension as a
feature in a segmentation process. As long as the feature
is able to separate the parts of an image, the accuracy
with which some physical or mathematical character-
istic is being measured may be of secondary interest.
Our experiments are designed to test the accuracy of
fractal estimators, not to assess their efficacy in seg-
menting images. It is important to understand which
factors contribute to inaccuracy if fractal dimension is
to be used most effectively.
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2. FRACTAL DIMENSION

The word fractal has many uses. We begin with
the notion that a fractal is a set having non-integer
dimension. Theoretically, a fractal exhibits the same
characteristics at all levels of resolution. With the
proper normalization, one cannot determine the resol-
ution at which the fractal is being observed. The fractals
discussed in this paper either have dimension between
1 and 2 (profiles) or between 2 and 3 (surfaces). Profiles
are observed as samples of a time series. Surfaces are
observed as samples of a digital intensity image defined
on a square. The higher the dimension, the more the
fractal surface “fills” the underlying space and the
“rougher” the surface appears. The estimators discussed
in this paper view fractal dimension as a global des-
criptor of data and work only with sets having a single
fractal dimension. Some recent works!'®:'”) regard
fractal dimension as a local descriptor that varies over
the image, and estimate fractal dimension with a bank
of Gabor filters or with wavelet transformations. Mul-
tifractals, or sets involving more than one fractal di-
mension, are well documented."*® Such a local, con-
tinuously varying fractal dimension is very different
from the fractal dimension examined in this paper.

Although the mathematical basis for fractals is well
known,!9 the precise relationship between an esti-
mator of fractal dimension and a mathematical concept
of dimension, such as Hausdorff-Besikovitch dimen-
sion or Minkowski—Bouligand dimension®? is known
only under infinite resolution. Several types of fractal
dimension have been mentioned in the literature. Con-
ditions under which the various concepts of fractal
dimension are equivalent and the exact connection be-
tween definitions of fractal dimension and Hausdorff—
Besikovitch dimension are never clear in practice. For
example, a fractal has been described as a set whose
Hausdorff-Besikovitch dimension exceeds its topolo-
gical dimension. Another source of confusion is the
tendency to define fractal dimension as the quantity
being computed by an algorithm, so that various algor-
ithms for fractal dimension may not all be estimating
the same quantity. We use the term fractal dimension
in a generic sense.

This paper concentrates on two estimators of fractal
dimension which are based on different fractal charac-
teristics. Test images and profiles having known di-
mension are generated and two types of results are
reported. Naive estimators are based on theoretical
considerations alone, as one would do on first encoun-
tering the algorithms. Some “optimistic” results are
then generated in which the parameters of the estimator
are intentionally adjusted to match the known fractal
dimension. These two sets of results exhibit the extremes
of accuracy and show how initial conditions and par-
ameters can have overwhelming influences on the esti-
mators. The disappointing results achieved by naive
estimators motivates the discussion of resolution and
quantization as factors which may explain the poor
results.
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3. ESTIMATORS OF FRACTAL DIMENSION

The fractal nature of a set is exhibited in many
characteristics of the set, such as length, volume, infor-
mation, correlations, power spectra, and distance dis-
tributions. Theiler®® and Dubuc et al.?%?" review
most of the estimators of fractal dimension proposed
in the literature. Underlying mathematical issues in the
estimation of fractal dimension have recently been
addressed.?2729 We chose two common estimators
of fractal dimension and characterized their behavior
in terms of resolution and quantization. To strip away
as many sources of confusion as possible, we worked
with profiles and images that are “known” to be fractals.
A digital image is a set of samples of light intensity
taken on an N x N grid covering the image. A digital
profile is a set of N regularly-spaced samples of a time
function. Estimators for the fractal dimensions of images
are defined in this section. Analogous estimators are
used for profiles.

3.1. Box counting

The box counting estimator of fractal dimension is
based on the fact that the number of cubes having side
length L needed to cover a fractal surface varies as L™°
where D is the fractal dimension that is to be estimated.
The box counting algorithm tessellates the cube con-
taining the fractal into boxes, or small cubes, having
side length L. The number of boxes containing at least
one sample of light intensity is denoted by M (L). If the
surface being sampled is a fractal surface, then M(L)
should be proportional to L™ 2. Plotting the negative
log of M(L) against the log of L produces a curve
whose slope estimates D.

We employ the “fast” box counting method of
Liebovitch and Toth® to estimate fractal dimension.
The side length of the box, L, is varied as 2¥for 1 <k <K
where N = 2X. This method represents each point on
the fractal as a concatenated integer and sorts the set
of concatenated integers only once. The values of M(L)
are then computed by masking this sorted list. The
log-log plot defined above has K points and a straight
line is fitted to these points to minimize squared error.
The first few and last few values of k may not contain

any valuable information. When k=1, L=2and the — 1

boxes are so small that M (L) is limited by the number
of samples. When k = K, there is only one box, which
must certainly be filled. Liebovitch and Toth suggest
ignoring values of k for which M(2*) < N 2/5 and ignor-
ing the two largest values k =K and k=K —1. We
have found these limits to be too restrictive in image
processing.

Voss?? and Keller et al.*? refer to box counting as
the process of centering a box on each sample point
for the purpose of estimating the probability that m
points lie in the box. The expected number of points
in a box is related to fractal dimension. Preliminary
investigations suggested that the “fast” box counting
method estimated fractal dimension more accurately
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than the Voss—Keller method, which motivated our
use of the “fast” box counting algorithm.

3.2. The variation method

Dubuc et al.?%2" found that analyzing the variation
of a fractal surface within small boxes as a function of
the box size produced good estimates of fractal di-
mension. Define the e-oscillation of a surface function
f, representing intensity, at point (x, y) in a unit cube
to be the difference between the two extreme values of
f in an e-neighborhood of (x, y):

v(x,y,&)=sup|f(xy,y1) — f(x2,¥,)l

where the supremum is taken over all pairs (x,,y,),
(x5, y,) for which

max {|x — x,|,|x — X2, [y — 1, |y — y,|} <e.

The volume, or total variation, is defined as
11

Vi, f) = E[)_(v(x,y,e)dxdy.
)

The fractal dimension D can be shown to satisfy

_log Ve, f ))

D=]im(3
loge

e—0
That is, the estimate of D is 3 minus the slope of the
plot of log V (e,, f) vs. loge,.

Parameter ¢ is the size of a covering element that
defines a box for calculating local oscillations. Follow-
ing Dubuc et al.,*" function f(x, y) is continuous and
defined for all x and y such that 0<x<1,0<y<1.
Suppose that f is sampled on an N x N grid. Then the
digitized data is defined by f(i/N, j/N) for all i, je
{1,2,...,N}. To approximate the oscillation on this
digitized array, these N x N points are grouped into
R? bins, where R is an integer. The values of ¢ are

&=k /R, n=npip,...,Npay

where {k,} is an increasing sequence of integers, such
that

ki=n, k;<2xk;_,.

)

In our experiment, we chose R = N, n;, = 2, n,,. = N/2,
and k; =k;_, + 1. Therefore, we used 2/N <¢,<1/2in
plotting the log—log curves. The portion of the log-log
plot to which a straight line is fitted must be chosen
heuristically. Dubuc et al.?%?!) used the heuristic of
“best fit” as the criterion in optimizing the portion to
be fitted. To serve the goal of this study, we implemented
two versions of the variation method, one that uses a
fixed portion of the log-log plot in estimation (discussed
in Section 5.1) and the other that has the mechanism
to optimize the portion of the log-log plot to be fitted
according to some criterion (discussed in Section 5.2).

4. GENERATION OF FRACTAL IMAGES

Our goal is to examine the accuracy of estimators
for fractal dimension so we use only images and profiles
having known fractal dimensions. Two algorithms for
realizing N x N fractal images of dimension D are now
described. We take N to be a power of 2 and take the
range of light intensity to be the integers from 0 to 255.
All images are enclosed in rectangular prisms of size
N x N x 256 where N has a value of 64, 128, 256 or
512, depending on the experiment. A Takagi surface,
employed by Dubuc et al.*" is a deterministic function
generated in the unit cube and scaled to the appropriate
size. The Takagi generator involves no random numbers,
so there is only one surface of each size. Samples of the
surface at the N2 pixel locations are scaled to integers
from 0 to 255. A Takagi surface has planes of symmetry
which separate the image into n x n subplanes, for n
a power of 2. This might bias estimators which use
windows that line up with these planes of symmetry.
Examples of Takagi surfaces are given in Fig. 1.

The midpoint displacement algorithm‘?®) (pages 96—
101), approximates a Brownian surface, or image, by
successive refinements in resolution. Brownian profiles
were also generated by this method. Random displace-
ments are added during the process, so that the actual
image obtained depends on the seed of a random
number generator as well as on the fractal dimension.
Examples, of Brownian surfaces are shown in Fig. 2.

Fig. 1. Examples of Takagi surfaces: (a) D = 2.1; (b) D = 2.5; (c) D = 2.9.
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(a) i (b)

Fig. 2. Examples of Brownian surfaces: (a) D = 2.1; (b)D=2.5;(c) D=209.

Evaluating the performance of an estimator of fractal
dimension requires that these two algorithms do, indeed
produce images with the given dimension. These algor-
ithms are popular sources of images in the literature
and we have no better alternatives. However, the resol-
ution of such images is inherently limited. A surface
with dimension close to 3 is supposed to fill the three-
dimensional cube, so the surface must be highly con-
voluted at all resolutions. An image samples the real
surface on a grid and it is not obvious that surfaces
with dimension close to 3 can ever be sampled finely
enough to capture the true essence of a three-dimen-
sional surface.

5. EXPERIMENTS IN ESTIMATING FRACTAL DIMENSION

This section reports the results of experiments in
which fractal dimension was estimated from profiles
and images under controlled conditions by the variation
and box counting methods. Ideally, the log-log plots
for the variation and box counting methods defined in
Section 3 lie along perfectly straight lines. The finiteness
of the data ensures that the plots do not define perfectly
straight lines, so one must fit a straight line to some
portion of the log-log plot. In box counting, the esti-
mate of fractal dimension is the slope of the fitted
straight line itself; in the variation method, the estimate
is 3 minus the slope.

To which portion of the log-log plot should the
straight line be fitted? A “naive” estimator simply uses
a fixed portion of the points on the log-log plot and
fits a least-squares straight line to these chosen points.
With the variation method, for instance, we use all the
points of the log—log data. With box counting, the last
point is not used. Thus, the “naive” estimators described
in Section 5.1 implement straightforward interpret-
ations of the theory. Experiments with optimistic “esti-
mators” in Section 5.2 intentionally try to achieve the
best results by choosing the portion of each log-log
curve whose slope provides the closest estimate to the
known fractal dimension. Such an “optimization” scheme
does not inspect the log—log plot to find the most linear
portion of the data, an optimization strategy adopted

by other researchers in the literature, 221 because a
best fit does not necessarily guarantee a best estimate,

5.1. Naive estimators

Test data for the first experiment came from two
sources. Brownian profiles having 512 points were
generated with true dimensions from 1.1 to 1.9 in steps
of 0.1. Brownian images were generated on a 256 x 256
grid with 256 gray levels. The fractal dimension varied
from 2.1 to 2.9 in steps of 0.1. Takagi surfaces were
generated under the same conditions. All experiments
involving Brownian data were repeated 100 times with
different random seeds.

The results of this experiment are summarized in
Tables 1 and 2. The estimates reported in this section
are averaged over 100 trials for Brownian data and are
the single value for Takagi data. The standard deviation
of the estimates for the Brownian data ranged from
0.03 to 0.02.

Tables 1 and 2 suggest that fractal dimension can-
not be accurately measured by the naive estimators.

Table 1. Means of naive estimates
of fractal dimension on Brownian
profiles and surfaces

Box
D Variation counting
1.1 0.99 121

—32— -1.04 -—1.23

13 1.10 1.26
14 1.17 1.29
15 1.23 1.32
1.6 1.28 1.34
1.7 1.33 1.36
18 1.37 1.37
19 1.41 1.38
21 2.26 2.07
22 2.28 2.10
23 2.30 2.16
24 2.32 222
25 2.34 2.28
26 2.36 2.34
27 237 2.38
2.8 2.39 242
29 240 247
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Table 2. Naive estimates of fractal
dimension on Takagi surfaces

Box
D Variation counting
2.1 223 2.22
22 2.27 2.25
23 2.31 2.29
24 2.35 2.31
2.5 2.40 2.34
2.6 245 2.39
27 2.49 2.40
2.8 2.54 2.38
29 2.59 2.41

Although estimates varied monotonically with fractal
dimension, the range of the estimates was much smaller
than the range of the “true” dimension and the esti-
mates do not match the true values except at a dimen-
sion of about 2.2. Box counting creates a wider range
of estimates than the variation method with Brownian
data but the reverse is true with Takagi data. The
results are disheartening.

The fact that estimators of fractal dimension do not
return accurate values on artificial images with known
dimensionality has been noted several times in the
literature. Keller et al.!? generated ten fractal surfaces
by the power spectrum method, having dimensions
ranging from 2.0 to 2.9 and estimated dimension with
box counting using probabilities. The sizes of the images
were not given. Estimated dimensions ranged from
207 to 2.53. Their “interpolation method” produced a
range from 2.09 to 2.81. They attributed the inaccuracy
to the difficulty of sampling surfaces which vary rapidly,
as do surfaces with dimension close to 3.0. We call this
the resolution effect. Dubuc et al.?!) compared the
variation estimator and two versions of Peleg et al.'>
blanket estimator on Takagi surfaces with true dimen-
sion between 2.4 and 2.7 and on fractal Brownian
surfaces with true dimension between 2.3 and 2.7. Sam-
ple size was not stated. Results were very good, especially
for the variation method, with errors below 0.05. How-
ever, their ranges of true dimension omit values at
which the estimators performed the worst, namely small
and large values. In addition, their estimators were
optimized in some way and are certainly not “naive”
in the sense of this paper.

Log-log plots for the variation and box counting
methods on some Takagi surfaces are given in Fig. 3.
Those for some Brownian surfaces are given in Fig. 4.
The log-log plots are certainly not straight and the
data for different values of dimension tend to merge as
box size increases. The absence of information about
fractal dimension in points corresponding to very small
and to very large boxes is apparent.

One might question the validity of the algorithms
that generate the data to explain the poor results.
P.el'haps they do not properly reflect the true fractal
dimension. However, these algorithms have been refer-
enced frequently in the literature and the examples in

Figs 1 and 2 do agree with intuition. The remainder of
this paper investigates other factors which may explain
the poor results.

5.2. Optimistic estimators

The log-log curves in Figs 3 and 4 for 256 x 256
images were re-interpreted to see if any portion of the
curve had the “correct” slope. Log-log curves for 512-
point profiles were treated in the same manner. Such
procedures have no value in practice because they
require that the true fractal dimension be known and
because the portion of the log—log data used depends
on the known fractal dimension. Our objective was to
see how the algorithmic parameters vary with fractal
dimension and to identify the parameters to which
estimates are most sensitive. The results are shown in
Tables 3 and 4.

The variation “estimator” computes the slopes of
all 5-point segments of the log—log plot and selects
the one which best estimates the correct fractal dimen-
sion. Such an “optimization” decides at what resol-
ution level the estimate should be computed in order to

Table 3. Means of optimistic estimates of fractal dimension
on Brownian profiles and surfaces

Variation Box counting
Dimension D Mean ko Mean jor
1.1 1.10 4 1.09 3-6
1.2 1.20 6 1.20 4-6
1.3 1.30 11 1.28 4-7
14 1.40 21 1.39 5-7
1.5 1.50 33 1.48 5-8
1.6 1.60 53 1.61 6-8
1.7 1.70 91 1.69 5-9
1.8 1.80 176 1.80 6-9
1.9 1.86 231 1.94 7-9
2.1 2.26 2 2.09 4-6
22 2.29 2 2.19 4-7
23 2.31 2 2.30 5-1
24 241 3 2.37 5-7
25 2.50 5 2.56 6-7
26 2.60 11 2.61 6-7
2.7 2.70 31 2.70 6-7
2.8 2.80 76 279 6-7
29 2.87 124 2.90 6-7

Table. 4. Optimistic estimates of fractal dimension on Takagi

surfaces

True di- Variation Box counting

mension D Estimate ks Estimate  [°"
2.1 2.22 4 2.15 34
2.2 2.26 4 2.20 34
23 231 4 2.29 3-5
24 2.39 4 2.39 4-5
25 2.50 6 2.53 4-6
2.6 2.59 12 2.54 5-6
2.7 2.68 28 2.63 5-6
2.8 2.81 30 2.74 5-6
29 290 32 2.88 5-7
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minimize the estimation error. Compared with the
practical optimization strategy employed by Dubuc
et al.2%2" ours also tries to adjust the resolution seen
by each box to improve the accuracy of measured
oscillation but according to a different criterion. The
column labeled k%' in Tables 3 and 4 refers to the
starting point of the 5-point segment. As dimension
increases, one must go further out on the curve (or start
at a better resolution level) to get the best estimate.
Although the slopes of the log-log curves for large
dimension eventually reflected the correct dimension,
those for small dimension were often incorrect.

The log-log plots for box counting contain 9 points
since 2° = 512 is the largest box size. Slopes were com-
puted for all possible straight lines when choosing the
slope closest to the correct dimension value. Column
I°P' in Tables 3 and 4 lists the ranges of the abscissa.
As the dimension increases, only the right-most portion
of the log-log plot correctly reflects the dimension. In
several cases, only two points were used. The extremes
of the log-log plots are not related to fractal dimension,
but the value of 9 appears a few times. The optimistic
“estimates” are much closer to the true fractal dimen-
sion than the estimates in Tables 1 and 2 especially for
Brownian curves. The portion of the curve that pro-
vides the best estimate is not necessarily the most
linear portion of the plot. There is no obvious way of
choosing the portion of the plot that yields the “best”
estimate.

6. RESOLUTION

This section reports on experiments that quantify
the effects of resolution on the robustness of fractal
dimensionality estimators. Resolution has two com-
ponents, namely image size and fineness of sampling.
Our experiments use mathematical images so these
components are related. Mathematically, images are
generated in a unit cube, then scaled toan N x N x 256
rectangular prism. We studied the effects of resolution
in two ways. First, we simply vary N and call this
resolution varying scheme “resampling”. The larger
the value of N, the higher the resolution since the
mathematical image is generated in a unit cube. Second,
we averaged small subimages in a given image to pro-
duce a smaller, necessarily blurred, image of lower
resolution than the given image. We call this process
“pyramiding”.

In the resampling scheme, the Brownian surfaces
were generated in four sizes: 64 x 64, 128 x 128, 256 x
256,and 512 x 512. Pyramided images were formed by
starting witha 512 x 512 image and producing smaller
ones. The variation method was applied to all Brownian
images with the first and the last 109 of points on the
log-log plot deleted. Box counting estimators were
applied with the first and last points on the log-log
plot deleted. All the estimates were averaged over 10
trials. The experimental results for different resolutions
using the resampling scheme are shown in Tables 5 and
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6. The results from the pyramiding scheme are shown
in Tables 7 and 8.

Tables 5 and 6 indicate that better estimates of fractal
dimension are obtained as resolution increases whep
D is greater than 2.5. This result was expected because
more samples are available to reflect increased rough-
ness of the fractal surface as D approaches 3.0. Unfor-
tunately, some estimates for small D also increase as
resolution increases so the ranges of the estimates are
not widened as much as we expected with the improve-
ment of resolution. One explanation for this unexpected
performance when D is small lies in our current algor-
ithms. No matter what the resolution, we deleted the
same percentage or amount of points from the two
ends of log-log plots. Thus, more points on log-log

Table 5. Mean estimates of fractal dimension using the vari-
ation method on Brownian surfaces, as functions of N

Image size
Dimension D 64 x 64 128 x 128 256 x 256 512 x 512

2.1 2.51 2.56 2.58 2.56
23 2.52 2.62 2.62 2.66
25 2.59 2.65 2.66 268
2.7 261 2.69 2.73 275
29 2.68 2.72 2.77 2.80

Table 6. Mean estimates of fractal dimension using box
counting method on Brownian surfaces, as functions of N

Image size
Dimension D 64 x 64 128 x 128 256 x 256 512 x 512

2.1 242 242 241 2.39
23 2.46 2.47 2.48 247
25 248 2.53 2.54 2.55
2.7 247 2.56 2.60 262
29 247 2.58 2.64 268

Table 7. Mean estimates of fractal dimension using the vari-
ation method on Brownian surfaces with pyramiding

Image size
Dimension D 64 x 64 128 x 128 256 x 256 512x 512

21 244 248 2.52 2.55
23 2.55 2.58 262 262 -
25 2.53 2.66 2.63 2.67
2.7 2.59 2.64 2.69 273
29 2.65 27 2.75 2.74

Table 8. Mean estimates of fractal dimension usin.g.box
counting method on Brownian surfaces with pyramiding

Image size
Dimension D 64 x 64 128 x 128 256 x 256 512x 512

2.1 2.37 242 242 239
23 235 246 247 247
25 246 248 2.53 2.55
2.7 244 2.51 2.57 262
29 248 2.51 2.60 268

FEREER

©E e

tic.
dr:
sin
Ev
tat
at

sch

mec

Pr

sar
nifi

cot
hu:
fac
of

[14
in”
0.1

cle:
are




ing scheme are showp

tter estimates of fracta]
lution increases whep
was expected because
flect increased rough.
sproaches 3.0. Unfor-
all D also increase as
s of the estimates are
ted with the improve.
on for this unexpected
in our current algor-
ution, we deleted the
points from the two
re points on log-log

imension using the vari-
es, as functions of N

ie size
256 x 256 512 x 512

2.58 2.56
2.62 2.66
2.66 2.68
2.73 275
2.7 2.80

dimension using box
ices, as functions of N

e size
256 x 256 512 x 512

241 2.39
248 247
2.54 2.55
2.60 2.62
2.64 2.68

aension using the vari-
:s with pyramiding

size
256 x 256 512 x 512

2.52 2.55
2.62 2.62
2.63 2.67
2.69 273
2.75 2.74

dimension using box
ces with pyramiding

size

256 x 256 512 x 512
2.42 2.39
2.47 247
2.53 2.55
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plots were actually used for larger resolutions. Therefore,
i effect, a second parameter was being varied in addi-
tion to resolution. Better assessment of resolution effect
may be obtained by scaling the number of points and
the portion on the log-log plot according to the res-
olution. This may benefit the estimates for small D
without affecting the positive resolution effect when
D is large.

The results in Tables 7 and 8 can be appreciated by
noting the drops in mean estimates as the image size
decreases. Bigger variations in estimates can be seen
for large D than for small D which is expected because
the original 512 x 512 image is rougher for large D
than for small D. As in Tables 5 and 6, estimates for
small D increase, thus worsen, as resolution increases.
The rate at which estimates decrease as resolution
decreases is about the same in Tables 7 and 8 as in
Tables 5 and 6.

The two approaches to varying resolution, resam-
pling and pyramiding, produced comparable results
on both estimators. The observations made under these
two schemes seem to re-enforce each other. But, how
does resolution affect each estimator differently? Com-
paring the results from Tables 5 and 7 with that from
Tables 6 and 8, the ranges of the estimates from box
counting estimator change more consistently toward
the correct direction with the increase of resolution.
This observation, however, is not significant enough
to conclude the difference in resolution effect on the
two estimators. Our results here emphasize that prac-
tical details of the estimator algorithms can have a
dramatic effect on the accuracy of the estimators and
simple designed estimators may lead to poor results.
Even though we cannot conclude precisely and quanti-
tatively the impact of resolution on the two estimators
at the current stage of this study, some estimation
scheme based on multiple resolutions could, perhaps,
be devised to overcome the resolution effect on esti-
mators of fractal dimension. A different sort of cor-
rection to the box counting algorithm for small D was
proposed by Taylor and Taylor.(22

7. QUANTIZATION

Images, by their nature, are quantized because each
sample is limited to a finite number of gray values. This
section examines whether quantization introduces sig-
nificant error into the variation estimator. It would
be meaningless to perform this experiment on the box
counting estimator, as it requires quantized data. One
bundred Brownian surfaces and the single Tagaki sur-
face, all of size 256 x 256, were employed. The slopes
of the log-log curves were computed for k, in the
range [8-128] with Takagi surfaces and in the range
[14—1 15] with Brownian surfaces. The results are shown
in Tables 9 and 10. Standard deviations were less than
0.1 for Brownian surfaces.

The effect of quantization on Brownian surfaces is
clear in Table 10 because the “quantized estimates
are about 0.05 smaller than the estimates computed

Table 9. Effect of quantization on the vari-
ation method with Takagi surfaces

D Non-quantized  Quantized
2.1 2.64 246
2.2 2.66 249
23 2.68 2.53
24 27 2.56
25 273 2.60
2.6 275 2.63
27 2.78 2.67
28 2.80 2.70
29 2.82 2.74

Table 10. Effect of quantization on the
variation method with Brownian surfaces

D Non-quantized  Quantized
2.1 222 2.16
22 227 222
23 2.33 2.28
24 240 2.37
25 247 243
2.6 2.54 2.50
2.7 2.60 2.57
2.8 267 2.62
29 272 2.67

without quantization. The range of estimates is simply
shifted. Table 9 indicates a similar effect on Takagi
surfaces but with a bigger shift in estimates. Quantized
images lead to smaller estimates: This observed effect
of quantization is somehow similar to the effect of
resolution discussed in Section 6. It is not surprising
because quantization is related to resolution. A quan-
tized image is a blurred version of its original non-
quantized representation. Quantization and pyramid-
ing blur data in different ways but they yield a similar
effect on the performance of the two estimators used
in this study.

8. CONCLUSIONS

Our study covered a wide range of situations and
parameters one may encounter in estimating fractal
dimension. The main result is to demonstrate that the
parameters of the estimation-algorithms and the true
values of D significantly affect the accuracy of the
estimates. The interaction between the parameters of
the estimation algorithms and D may be explained by
resolution effect. Naive estimators, which are often
practical estimators, are not reliable. Certain optim-
ization seems necessary to improve the quality of esti-
mates, mainly by compensating the resolution effect.
The log-log plots from which estimates are computed
are not straight, as theory dictates, but information
about the “correct” D is somewhere, if only we knew
where to look. Trying to find the most linear portion
of the log-log curve does not ensure the best estimate.

The poor results for large D can be somewhat over-
come by increasing the resolution of sampling but

.
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increasing resolution may degrade the estimates for
small D. The fact that a small D value produces a
smooth surface suggests that quantization effects could
account for the poor estimates. We cannot claim a
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