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Abstract—To protect computation, a security architecture
must safeguard not only the software that performs it but
also the state on which the software operates. This requires
more than just preserving state confidentiality and integrity,
since, e.g., software may err if its state is rolled back to a
correct but stale version. For this reason, we present Memoir,
the first system that fully ensures the continuity of a protected
software module’s state. In other words, it ensures that a
module’s state remains persistently and completely inviolate. A
key contribution of Memoir is a technique to ensure rollback
resistance without making the system vulnerable to system
crashes. It does this by using a deterministic module, storing a
concise summary of the module’s request history in protected
NVRAM, and allowing only safe request replays after crashes.
Since frequent NVRAM writes are impractical on modern
hardware, we present a novel way to leverage limited trusted
hardware to minimize such writes.

To ensure the correctness of our design, we develop formal,
machine-verified proofs of safety. To demonstrate Memoir’s
practicality, we have built it and conducted evaluations demon-
strating that it achieves reasonable performance on real hard-
ware. Furthermore, by building three useful Memoir-protected
modules that rely critically on state continuity, we demonstrate
Memoir’s versatility.

I. INTRODUCTION

Many security architectures [8, 12, 13, 17, 22-24, 31,
33, 35] attempt to improve system security by isolating
the security-sensitive portions of applications and system
services. The resulting protected modules are pieces of code
that operate on opaque state and expose a limited API to
the outside world. The modules are protected by a layer of
privileged code, e.g., a hypervisor or VMM, that isolates the
protected module from all other code (Figure 1), reducing
the module’s Trusted Computing Base (TCB).

If the protected module and the TCB are correctly written,
then while the TCB continuously executes, this isolation-
based architecture suffices to protect the module’s execution.
Unfortunately, reboots, machine crashes, or power failures
inevitably interrupt the TCB’s execution, and indeed, in
some systems, the TCB is ephemeral by design [23, 24, 31].
Thus, isolation-based architectures require a secure mech-
anism for ensuring state continuity for protected modules
across TCB interruptions. In other words, when the module
resumes execution after a TCB interruption, it should be in
the same state it was in before the interruption.
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Prior work has attempted to provide state continuity in
two ways. Some systems [8, 12, 13, 17, 22, 35] accept a
bloated TCB that includes code for file systems and storage
device drivers. This increases the risk of bugs [26] and
provides incomplete protection (see SIII-E). Another ap-
proach [23, 24, 31, 33] preserves TCB minimality by relying
on the untrusted code for persistent storage but encrypting
and integrity-protecting a snapshot of the module’s state
between module invocations. However, prior solutions in
this category are either vulnerable [23, 31, 33] to a rollback
attack, or unable [24, 31, 33] to achieve crash resilience.

In a rollback attack, untrusted code violates the safety
of state continuity by providing the TCB with an old
state snapshot. The snapshot is internally consistent and
cryptographically sound, but running the module on that
snapshot incorrectly ignores the module’s execution history.
For example, a password verification module might be rolled
back to undo a user’s password change, or a differentially-
private [11] database might be rolled back to violate the
database’s privacy guarantees. Note that a rollback attack is
distinct from a classic replay attack in which the adversary
replays a previously seen message to a stateful recipient. In
a rollback attack, the recipient’s state itself is reverted to a
prior state.

Even in the absence of attacks, a lack of crash resilience
can undermine the liveness of the protected module. In other
words, an unexpected crash may leave the protected module
in an inconsistent state or prevent it from making forward
progress. For example, suppose that a security framework
provides a trusted monotonic counter to thwart rollback
attacks. When a protected module transitions to a new
state, it increments the trusted counter and includes the new
counter value in the state that it persists to disk. Upon its
next invocation, the module checks whether the counter in
its ostensibly fresh state is equivalent to the current value of
the trusted counter. This simple technique allows the module
to detect valid yet stale states. However, if the computer
crashes between the increment of the trusted counter and
the persistent write of the new module state, the module
becomes unusable. The trusted counter’s value will always
be at least one greater than the value in any state that the
untrusted code can provide. Thus, the module will always
refuse to advance further.
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Figure 1. Execution Model. The Trusted Computing Base (TCB)
isolates the protected module from untrusted code. Memoir securely
maintains state continuity for the protected module, despite relying
on the untrusted code for bulk persistent storage.

In this paper, we describe Memoir, a generic framework
for guaranteeing the safety and liveness of state continuity
for protected modules. A key insight is that we can achieve
these properties by making our protected modules behave
deterministically; even non-deterministic modules can be
made deterministic via a PRNG and a cryptographically
protected seed. In particular, a deterministic module that
is rolled back to a previous snapshot will leak no new
information as long as untrusted code is not permitted to
provide the protected module with an input that is different
from the one it provided the last time the module started
from that snapshot. Memoir enforces input consistency by
using trusted hardware to store a concise check on the full
history of inputs to the module. As a result, legitimate code
can always recover from crashes, since it can ensure that the
most recent request and snapshot are made persistent before
invoking the module. However, malicious code cannot use
this recovery mechanism to violate state continuity.

In practice, instantiating Memoir is made challenging by
the limitations of commodity secure hardware. In particular,
the most widely available commodity secure hardware, the
Trusted Platform Module (TPM) [37], has serious perfor-
mance and resource limitations. For example, although the
TPM specification dictates the inclusion of monotonic coun-
ters, it only requires the ability to increment a counter once
every five seconds, which is clearly insufficient for high-
event applications like networked games [20]. Similarly,
although the TPM specification mandates access-controlled
nonvolatile RAM, most implementations provide only 1,280
bytes of NVRAM. Even worse, the NVRAM is quite slow
and is only expected to support 100K write cycles across
its entire lifetime; writing once every second would exhaust
NVRAM in less than 28 hours.

Memoir circumvents these limitations by avoiding the
monotonic counters, minimizing the number of writes to
slow, write cycle-limited NVRAM, and using a novel mul-
tiplexing technique to support multiple protected modules

with a constant amount of NVRAM. With these techniques,
Memoir supports an arbitrary number of protected modules
while performing NVRAM writes only twice per boot,
at which rate we conservatively estimate existing TPMs’
NVRAM lasting for over 136 years.

To assess Memoir’s security, we develop formal, machine-
checked proofs of safety using TLA+ [19]. The proofs
include 243 definitions, 74 named theorems, and 5816
discrete proof steps. At a high level, they show that Memoir’s
protocols preserve state continuity for protected modules.

We implement Memoir on Linux, employing the Flicker
architecture [24] to isolate the protected modules. We also
create a variety of Memoir applications, ranging from a
simple count-limited password checker to a sophisticated
differentially-private statistics module. Our evaluation shows
that Memoir’s state continuity protection adds only 76 ms of
overhead to request execution, and that we can save 17 ms of
this overhead with our optimization to limit NVRAM writes.

In summary, we make four key contributions.

1) We demonstrate the importance of state continuity for
protected modules, highlighting the dangers of rollback
attacks and crash-induced inconsistencies.

2) We design a generic, minimal-TCB framework to se-
curely provide state continuity for protected modules.

3) We provide a concrete implementation of this frame-
work that provides high performance despite the limi-
tations of current secure hardware.

4) Using TLA+, we formally prove the correctness and
security of our framework.

II. PROBLEM DEFINITION
A. Execution Model

In this work, we focus on an execution model (see
Figure 1) in which a module consisting of code and security-
sensitive data is protected from other code on the system. We
refer to the code that is responsible for isolating the protected
module as the Trusted Computing Base (TCB). While the
TCB may take the form of a hypervisor, virtual machine
monitor (VMM), or even the hardware itself, this basic
model encompasses a plethora of systems [8, 12, 13, 17, 22—
24, 31, 33, 35]. This model is popular, in part, because it
allows security-sensitive code operations to coexist safely
with potentially buggy legacy code.

We assume that, either by design [23, 24, 31] or as a result
of machine reboots or crashes, the TCB is not continuously
in control of the platform. As a result, we require a secure
mechanism to preserve state continuity for the protected
module. We can decompose this into a safety property and a
liveness property [2]. For safety, if we think of the protected
module as a state machine, then we require that adversarial
actions should not be able to force the state machine into an
invalid state, nor into a valid state via an invalid transition.
For liveness, we require that machine crashes should not
leave the state machine unable to advance.



To keep the TCB minimal, we primarily focus on archi-
tectures [23, 24, 31, 33] that do not include file system and
storage device driver code in the TCB. Thus, the protected
module must rely on untrusted code for the bulk of its
storage needs. We discuss extension of our design to systems
with larger TCBs in §III-E.

Finally, we assume some small amount of trusted persis-
tent storage is available to the TCB. We aim to minimize
the amount needed, both to reduce hardware costs and to
minimize TCB complexity.

B. Adversary Model

The adversary’s goal is to violate the continuity of the
protected module’s state. Potential violations include placing
the module in an invalid state (e.g., convincing a monotonic
counter module to use a negative counter value), or causing
the module to make an invalid transition to a legitimate state
(e.g., convincing a monotonic counter module to roll back
to an earlier counter value). However, we do not consider
denial-of-service attacks, since the adversary could always
choose to turn off the computer.

The adversary can run arbitrary code in the untrusted code
environment and has full control over the bulk persistent
storage facilities on the machine, meaning he can modify,
delete, and retrieve old versions of any data placed in bulk
storage. The adversary also controls power to the machine,
and hence can cause reboots at arbitrary points in time, even
when the TCB controls the platform.

We assume the adversary cannot launch sophisticated
hardware attacks (e.g., physically reading memory or ex-
amining CPU registers). We also assume the correctness of
the TCB and protected module, which implies that the ad-
versary cannot violate the isolation imposed on the untrusted
code. Though we briefly discuss some specific side-channel
attacks, an exhaustive treatment of all such threats is beyond
the scope of the current paper.

C. Challenges on Current Systems

On current commodity computers, the most widely avail-
able secure hardware is the Trusted Platform Module
(TPM) [37], a special-purpose security chip which is de-
ployed on over 200 million machines [15]. The TPM
includes several Platform Configuration Registers (PCRs),
which can record information about the software state of the
platform. Via an attestation protocol, the TPM can convey
the value of these PCRs to an external verifier; see prior
work for details [28, 37].

The TPM also ostensibly includes a number of features
that should aid secure state continuity. Unfortunately, in
practice, these features have significant limitations. The
TPM specification requires TPMs to support at least four
monotonic counters, but only requires them to sustain one
increment every five seconds, which significantly limits the
rate at which a protected module can update its state.

Sarmenta et al. look at other limitations and suggest some
hardware-based improvements [32].

The TPM also includes a limited amount of nonvolatile
RAM (NVRAM). Reading and writing to NVRAM can be
restricted based on the contents of the PCRs, so an NVRAM
location can be made accessible only to a single module.
Unfortunately, the specification only requires 1,280 bytes
of NVRAM, some of which is dedicated to various system
features such as storing the TPM’s endorsement credential
and the launch control policy. Our experiments (see §VI-B)
indicate that although reading NVRAM is relatively fast
(9.8-14.8 ms), writing is 3—6x slower (33.9-82.4 ms). In
addition, the NVRAM is only expected to tolerate a limited
number (~100,000) of write cycles during its lifetime.
Writing to NVRAM once every second would exhaust its
write cycles in less than 28 hours.

D. Strawman Solutions

We now demonstrate the complexity of providing state
continuity by illustrating subtle issues with solutions that
might otherwise appear to work well.

Monotonic counter. A fragile technique for preventing
rollback attacks is to include the value of a trusted monotonic
counter in the state. As discussed in §I, this approach is not
crash resilient, since a crash after the counter is updated but
before the new state has been made persistent will render the
system unusable. In addition, as discussed above, monotonic
counters on current hardware suffer from several limitations.
Allowing replay. Crash resilience can be achieved by allow-
ing untrusted code to replay its input after a crash. However,
untrusted code can abuse this functionality by claiming (or
causing) a crash and then providing the protected module
with a different input, hence causing a rollback attack.
Two-phase commit. A standard technique for achieving
crash resilience is a two-phase commit protocol, in which the
coordinator asks each participant to tentatively perform an
operation and provide the output. When all participants have
provided tentative output, the coordinator tells each partici-
pant to commit. However, these protocols are concerned with
atomicity of actions, rather than the secrecy and integrity
of one party’s state. Indeed, in our model, the coordinator
is untrusted code and must not see the output from the
protected module until the operation is truly committed.

We considered the following variant of a two-phase com-
mit protocol, but it proved to be inefficient and prone to
subtle timing attacks. In brief, rather than store a monotonic
counter in NVRAM, the protected module stores a hash of
the encryption of the latest state and output. The encryption
scheme must be randomized but not stateful (e.g., CBC with
a random IV). To make a request, the untrusted system
supplies the protected module with the request, the current
encrypted state, and the last encrypted output. If the hash
of the encrypted state and output match the contents of
NVRAM, the module performs the request. It uses the TPM
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Figure 2.  Architecture of Memoir. Rounded boxes indicate persistent storage.

to create a fresh random IV and encrypts the new state and
output. It hashes this encryption, but does not update its
NVRAM. Instead, it simply returns the encrypted state and
output to the untrusted system, along with a signature linking
the current hash to the tentative next hash.

To commit the request, the untrusted system writes the
encrypted state, encrypted output, and signed statement to
disk. Then, it passes them to the protected module with an
instruction to commit. The protected module verifies the
signature is valid, refers to the current hash, and contains
a next hash that is the hash of the supplied state and output.
If so, it updates its NVRAM to contain the next hash and
returns the decrypted output. If a crash happens between
the NVRAM update and output revelation, the untrusted
system supplies the encrypted state and output to the module
and asks for the decrypted output. The module verifies that
the encrypted state and output correspond to the hash in
NVRAM, to make the revelation safe.

This approach would work, but is inferior in two major
ways to Memoir. First, it is expensive: for each request, it
requires two invocations of the trusted module, an NVRAM
write, and an access to the TPM’s slow random number
generator. In contrast, Memoir needs only one invocation of
the trusted module, can avoid NVRAM writes as discussed
in §III-C, and can avoid the TPM’s random number generator
as discussed in §V-A. Second, and most seriously, two-
phase commit allows a subtle rollback attack based on
side channels. When the adversary submits a request, he
receives the resulting encrypted state and output. Thus, he
can observe side channels, such as the size of the resulting
state and output, and the time to perform the request [1].
Based on these side channels, he can then decide whether
to commit the request; not doing so is essentially equivalent
to rolling it back. This attack might be used, for instance, to
make unlimited incorrect password guesses without causing
the module to enter a state where it backs off requests.
Computation on encrypted data. Instead of using a pro-
tected module, we might instead employ one of the many
cryptographic techniques for allowing an untrusted party to
perform an operation over encrypted data [29]. However,
such techniques tend to be limited in the functionality
they offer and/or exorbitantly expensive from a performance
perspective, whereas protected modules allow arbitrary func-
tionality to operate directly on the raw data.

III. MEMOIR DESIGN

Memoir is our system for providing state continuity
without sacrificing crash resilience. Since it is agnostic to
the protection framework used, and since TCB minimality is
a key goal, we make only the most basic assumptions about
the storage protection afforded by that framework. §III-E
discusses optimizations enabled by larger-TCB protection
systems that provide greater storage protection.

We propose two main designs for Memoir, which we
call Memoir-Basic and Memoir-Opt. The latter is optimized
to avoid NVRAM writes and thereby achieve better per-
formance and longevity, but it requires an Uninterruptible
Power Supply (UPS). This is because although Memoir-Opt
can survive OS crashes, it cannot handle unexpected power
failures.

III-A gives an overview of Memoir’s architecture, then
§III-B and §III-C describe Memoir-Basic and Memoir-Opt.
We then discuss potential extensions of our design, to
support any number of coexisting modules (§III-D) and
to make use of facilities in larger-TCB protection systems
(8III-E). Finally, SIII-F suggests a small TPM modification
to further enhance Memoir.

A. Architecture

Figure 2 illustrates the architecture of our system. Un-
trusted clients use untrusted Memoir tools to interact with
protected modules. A protected module is implemented by
linking a service with MemoirLib, Memoir’s module library.
A service is a piece of code that handles requests and
produces responses, without concern for state continuity; it
links with MemoirLib to ensure continuity of its state.

MemoirLib ensures state continuity by mediating
all interaction with the untrusted system, in particular
leveraging the untrusted system to provide storage. It
does so by outputting state snapshots and verifying
and decrypting them when they are passed back as
input. Figure 3 illustrates the contents of a snapshot. It
contains an encrypted serialization of all the module’s
state, including both the service state and MemoirLib
state. It also contains a freshness tag, used by Memoir
to determine whether a snapshot is up-to-date. Finally,
it contains an authenticator, which takes the form:
MACsymmetrickey(“AUTH”||EncryptedState||FreshnessTag).
MemoirLib uses this to determine a snapshot’s legitimacy.



State snapshot

Service state, serialized

Q

S

MemoirLib state, serialized S

Private asymmetric key :%

PRNG state &
Freshness tag
Authenticator

Figure 3. Contents of a state snapshot

Memoir’s design requires that the service be deterministic.
This is reasonable, since the main sources of nondetermin-
ism are time, random numbers, and multithreading [21, 30].
Time can be supplied as an input to a service and, if
needed, it can be signed by a trusted time source. To pro-
vide randomness, MemoirLib includes a cryptographically-
secure deterministic PRNG (pseudo-random number gener-
ator) [40]. Memoir does not currently support multithreaded
modules, since we imagine most will be single-threaded
for the sake of simplicity and small TCB. However, if
needed, techniques exist for making multithreaded programs
deterministic [4, 5, 27].

To be protected, a service must implement four functions:
initialize its state in memory, handle a request to produce
a response, serialize its state, and deserialize its state.
MemoirLib uses these functions when creating modules and
executing requests. We omit discussion of how MemoirLib
allows remote verification of a module’s public key, since
our approach is standard [24] and unrelated to the problem
of ensuring state continuity.

Figure 4 shows in detail how Memoir creates a module.
At a high level, the client supplies the Memoir create
tool with the module’s code (1). For instance, he might
supply code for a password-checking module. The create
tool is responsible for basic bookkeeping and interfacing
with the protected module (2-3, 8-9). Once the module has
been instantiated and initialized (4-7), the create tool (10)
returns a handle, which the client can use when performing
additional operations with the module.

Figure 5 shows the details of how Memoir executes a
request. (1) The client invokes the Memoir execute tool,
supplying a module handle and a request to pass to that
module. For instance, the request might be to check pass-
word P@55w0rd. The tool manages the state snapshots and
interfaces with the protected module (2-3, 9-10). MemoirLib
is responsible for performing various security checks and
invoking the service (4-8). Finally (11), the execute tool
gives the response, for example, password incorrect,
to the client.

Our approach to defending against adversarial denial-of-
service is to require root access for the files and TPM
capabilities that the Memoir tools use. Thus, normal users
are unable to make modules inaccessible by, e.g., deleting

snapshots or deallocating NVRAM regions. However, by
giving the tool binaries the setuid attribute, normal users can
perform legitimate operations on modules. It might seem odd
to place trust in the root user and the OS since the design is
meant to take the OS out of the TCB. However, note that the
trust is only that they will not deny service to local users,
which they could do anyway in various other ways. A root
compromise cannot cause a module to operate incorrectly,
roll back state, or mislead verifiers; it can only prevent users
from invoking a module.

In general, Memoir defines the identity of a protected
module to be a hash of its code. However, applications that
wish to support upgradeable modules can do so using Mem-
oir’s primitives. As with all upgrade systems, to upgrade
securely, the module developer must include a mechanism
by which the old module can authenticate the new module,
e.g., by providing the old module with a public key and
signing a hash of the new module.

To begin the upgrade process, the application asks the
Memoir tools to instantiate the new module. The old mod-
ule can then perform a “remote” verification of the new
module’s identity and public key [24], using the Memoir
tools as an untrusted intermediary. Assuming the verification
succeeds and the identity matches the certified value for
the new module, the old module does two things: (1) It
transitions to a terminal state, from which it will refuse to
process further requests. (2) It outputs its state encrypted
under the new module’s public key. The atomicity of this
state transition plus output are guaranteed by Memoir’s
design. Hence, the upgrade process is itself protected from
problems of continuity safety and liveness.

B. Achieving State Continuity: Memoir-Basic

Recall from §II-D that if a module uses a monotonic
counter value as its freshness tag, then a crash can render it
unusable. The problem is that the system may crash between
the time the module updates the protected counter, and the
time the untrusted system receives and durably stores the
new state snapshot. Once this happens, the user can only
supply snapshots to the module that will be rejected as being
more stale than the current value of the counter.

Our solution to this is to tag a state not with the number
of requests that led to it but with the sequence of requests
that led to it. We call this sequence the state’s history.
This method of tagging is useful because it gives us the
ability, after a system crash, to replay the last request
without compromising security. Since we can be assured that
the request being replayed is identical to the last request
performed, we can safely re-execute the request. Because
the module is deterministic, it will do the same thing during
replay that it did originally. Hence, it will not reveal any
more information to the untrusted system than has already
been revealed.
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The tool saves the snapshot to disk, then (11) returns the response to the client.

We can securely summarize a module’s history with
a hash chain. We define the initial history summary
by HistorySummary, = 0, and let the history sum-
mary after the nth request r, be HistorySummary, =
Hash(HistorySummary,,_; || r,). The properties of a secure
hash make it hard for an adversary to produce multiple
request sequences that produce the same summary. Thus, by
using the history summary as the freshness tag and storing
that in protected NVRAM, we protect the module against
rollback while only using a few bytes of this scarce resource.

Using the history summary as our freshness tag also
allows us to safely recover from crashes, as we now il-
lustrate. Suppose that the system crashes after a module
performs request r, but before the untrusted system can
persist the resulting snapshot Snapshot,. The module now
expects Snapshot, but the untrusted system does not know
it; it knows only Snapshot,_; and r,. The untrusted system
would like to supply these to the module and have it replay
the request, producing the lost snapshot Snapshot, as well
as the lost output. The history summary allows the module
to safely do so.

From the module’s perspective, it has been given an
allegedly-previous snapshot AllegedPrevSnapshot and an
allegedly-previous request AllegedLastRequest. The mod-
ule can check the authentication and freshness tag in

the alleged snapshot and determine that it corresponds
to a particular history summary AllegedSummary. If
Hash(AllegedSummary || AllegedLastRequest) matches the
current trusted history summary, then the module can be
assured the claim is true. It is thus safe to replay this request
on the supplied snapshot, thereby recovering from the crash.

All that remains is to ensure that the untrusted system can
supply the previous state snapshot and last input in the event
of a crash. Fortunately, this is straightforward, because the
Memoir tools store them durably on disk before invoking
the protected module. In the event of a crash, it has them
readily available for use in recovering the system.

It is important that MemoirLib updates the freshness tag
in NVRAM before invoking the trusted module. This is to
prevent leakage of information through the side channel of
execution time. To illustrate, suppose an adversary wants
to check a password without updating the module’s state.
Suppose further that the adversary knows the module takes
at least time ¢ if and only if the password is incorrect. The
adversary can invoke the module, wait for time ¢, then crash
the system if he has not heard a response. If MemoirLib had
not already updated the freshness tag, the adversary would
not have to replay the same request he did before; he could
behave as if it never happened.



C. Avoiding NVRAM Writes: Memoir-Opt

A limitation of Memoir-Basic is that it requires a slow
update of write-cycle-limited NVRAM on every request.
For this reason, we now present our high-performance
variant Memoir-Opt that rarely writes to NVRAM but still
maintains full security. However, it requires a checkpoint
routine to take place before the system shuts down, neces-
sitating special precautions to deal with crashes. To deal
with system crashes, we must program the hardware to
invoke the checkpoint routine before shutting down; this is
possible because the checkpoint routine is a protected, OS-
independent module that requires no access to disk. To deal
with power failures, we need to attach an Uninterruptible
Power Supply (UPS) to give Memoir-Opt warning that it
needs to invoke the checkpoint routine.

Because Memoir-Opt is complex, we describe it in stages.
First, we describe the TPM feature it relies on, the PCR.
Second, we describe how we can use a two-part history
summary to store the history summary in both NVRAM
and a PCR, to avoid common-case NVRAM writes. Third,
we discuss how to use a guard bit and extension secret
to protect against adversaries who can reset the computer
without triggering the checkpoint routine. Finally, we discuss
the practicalities of setting up a checkpoint routine.

Using a PCR to avoid NVRAM writes. To avoid NVRAM
writes, Memoir-Opt requires trusted memory that will persist
across module invocations. For this, we use a PCR. The
property of a PCR we rely on is that it can only be updated
in two ways: (1) rebooting to set it to 0, or (2) extending
it [37]. One extends a PCR by supplying a 20-byte value A,
causing the PCR’s contents to become Hash(OldValue || /).

Our standard design assigns one PCR to each module,
though SII-D will show how to use one PCR for all
modules. To ensure the module knows which PCR to use,
we store the PCR index in one byte of NVRAM, by the
symmetric key.

Two-part history summary. To achieve crash resilience,
we cannot rely on a PCR alone, since the PCR is cleared
upon shutdown. Instead, we will store the history summary
in a combination of NVRAM and the PCR. For this, we
use a two-part history summary, (NvramPart,PcrPart). To
avoid NVRAM writes, we craft a summary update function
that rarely updates NvramPart. To deal with shutdowns, we
have our checkpoint routine condense the entire summary
into only NvramPart so that PcrPart can be zeroed.

For our initial history summary, we use (0,0). To compute
the next history summary following (n, p) given a request r,
we use Successor((n, p),r), defined as:

(n,Hash(p || Hash(ExtensionSecret || r))).

ExtensionSecret is a secret known only to the module; we
will discuss its purpose later. The checkpoint of a history

(1) To determine if a tag sjleged is fresh:
Set s to the current history summary
If 5 = $3leged, return true
If s = Checkpoint(s,|ieged), return true
Otherwise, return false

(2) To determine the current history summary:
Read NvramPart and GuardBit from NVRAM
Read PcrPart from the PCR
If GuardBit =1 and PcrPart =0, return invalid

(malice detected)
If GuardBit =0 and PcrPart # 0, return invalid
(shutdown required after recent checkpoint)
Otherwise, return (NvramPart, PcrPart)

(3) To change current history summary from s to Successor(s,r):

Extend the PCR with Hash(ExtensionSecret || r)
Set GuardBit in NVRAM to 1 if it isn’t already

(4) To check if syjeged and rajjeged are the previous tag and input:

Set s to the current history summary

If s = Checkpoint(Successor(s,|lieged; alleged) ) Teturn true

If s = Checkpoint(Successor(Checkpoint(saiieged); Talleged )
return true

Otherwise, return false

(5) To checkpoint in anticipation of shutdown:
Set s to the current history summary
If s is invalid, exit
If GuardBit is already 0, exit
Set NvramPart in NVRAM to Hash(s.n || s.p)
Set GuardBit in NVRAM to 0

Figure 6. Pseudocode for Memoir-Opt operations

summary is defined by:

if p=0

. n7
Checkpoint({n, p)) Z{ m.p) otherwise.

(Hash(n | p),0)
Note that these definitions are specifically adapted to the
TPM’s PCR-extension operation discussed above.

Figure 6 provides pseudocode showing how we use these
two-part history summaries in practice. We now discuss
these algorithms in detail, though we defer discussion of
the guard bit until later.

When Memoir-Opt is asked to execute request r on a
snapshot alleged to be the current one, it does the following.
First, it must check whether the snapshot’s tag sjieged 18 fresh
(Figure 6, function #1). To do so, it extracts the current
history summary s = (NvramPart, PcrPart) from NVRAM
and the PCR (Figure 6, function #2). If § = S,jjeged OF § =
Checkpoint(saiieged), then the snapshot is fresh. There are
two cases here because it is possible there was a checkpoint
between the time the snapshot was generated and now. Even
if a checkpoint occurred, the snapshot is still fresh.

Next, before executing the request, Memoir-Opt must
update the history summary to reflect it (Figure 6, function
#3). It does so by updating it to HistorySummary,,,, =
Successor(HistorySummary,,;;,r). This only requires ex-
tending the PCR part, and never modifies the NVRAM part,



due to the definition of Successor. Thus, we stay within the
limits of the PCR’s abilities, and avoid writing NVRAM.

Now, consider the case where the untrusted system asks
Memoir-Opt to replay alleged last request 75jjeged ON a Snap-
shot with tag s,jjeged. Memoir-Opt must check that the given
request and snapshot truly constitute the last request and pre-
vious snapshot (Figure 6, function #4). To do so, it extracts
the current history summary s as described earlier. Then, it
checks whether s = Checkpoint(Successor (Salieged, Falleged))
or s = Checkpoint(Successor(Checkpoint(Saiieged ) Falleged ) ) -
In either case, it is safe to re-execute the request and supply
the response. This time, the reason there are two cases is
because there may or may not have been a checkpoint after
the snapshot s;jegeq Was taken and before the last request
occurred. On the other hand, it is certain that a checkpoint
was taken after the last request occurred, for the following
reason. The only reason why the untrusted system would ask
for a replay of a request is if the system shut down so soon
afterward that the untrusted system did not have a chance
to write the output to disk. If the system shut down after a
request, a checkpoint must have been taken.

To condense the history summary into NVRAM
before shutdown, the checkpoint routine computes
Checkpoint(HistorySummary) and stores the NVRAM part
in NVRAM (Figure 6, function #5). The PCR part will
then be set to its correct value of zero upon shutdown.
Preventing rollback attacks. Unfortunately, the approach
as we have so far described it is subject to a rollback attack.
The adversary can accomplish this by disconnecting the UPS
and thereby powering off the machine without triggering the
checkpoint routine. If this happens, then the PCR’s value
will reset to zero without its information being condensed
into NVRAM. This allows the adversary to roll back to the
snapshot in use when the computer last turned on.

To prevent this, we need an additional bit of NVRAM,
which we call the guard bit. The module sets this bit upon
extending the PCR, to indicate that the PCR’s value is
invalid if it is zero. The checkpoint routine clears the bit
after condensing the PCR’s data into NVRAM, to reflect
that the PCR’s value is valid if zero. MemoirLib never
trusts its history summary if it finds the guard bit and PCR
inconsistent.

This prevents the rollback attack we described earlier, but
another attack is still possible. The adversary can prevent a
checkpoint, reset the computer, then extend the PCR with
one or more of the requests that followed the previous
system power-up. This will put the PCR in a state consis-
tent with an outdated snapshot, which the adversary could
present as fresh. Unfortunately, the guard bit will not help
us since the PCR is non-zero and the guard bit only prevents
the module from incorrectly treating a zero PCR as correct.

This is why we use ExtensionSecret, generated at random
at initialization time and stored along with MemoirLib’s
other state. By using this secret, even though the adversary

can readily observe history summaries in the PCR, he cannot
learn the inputs that must be supplied to the TPM to get it
to produce those summaries. If he could, he could invert the
hash function, a cryptographically hard operation. Since the
adversary cannot extend the PCR to produce valid history
summaries, he cannot roll back to earlier states.

Setting up the checkpoint routine. We now briefly discuss
the practicality of an OS-independent mechanism that will
be reliably invoked during system shutdown, even if the
shutdown is the result of an OS crash or a power failure.
The most logical place to install such a routine is as
a System Management Interrupt (SMI) handler that exe-
cutes in a special CPU mode—System Management Mode
(SMM) [16]. SMM is an operating mode with full device
and memory access that can preempt all code running in
Protected Mode, even hypervisors. The principal challenge
in installing a Memoir-Opt shutdown handler as an SMI
handler is to modify the code that runs in SMM. The
most reasonable approach is to collaborate with a BIOS
vendor. The HyperSentry project showcases some of the
interesting capabilities of custom SMI handlers [3]. With
the SMI handler in place, the SMI itself can be triggered
via a communication from an uninterruptible power supply
to the IPMI server management facility. Another option is
to use existing low-level OS mechanisms that can generate
SMIs in software, e.g., the Linux kernel’s BUG facility.

D. Allowing Unlimited Modules

One concern with our design is that it limits the number of
modules that can coexist on a machine. This is because each
module requires scarce NVRAM, enough to store a hash
and symmetric key. The problem is even worse for Memoir-
Opt, which also requires a PCR exclusively devoted to each
module. Fortunately, we have an approach that allows any
number of modules to coexist while using only as much
protected memory as is necessary for one module.

Our approach is to have only one module use protected
nonvolatile memory: the module-management module (M?).
Each other protected module uses a version of MemoirLib
that relies on the M? for freshness protection and symmetric
key storage, and thus does not need any NVRAM allocated
to it. We call a module that relies on the M> in this way
a submodule; as a result, the M> is in the TCB of each
submodule. Figure 7 summarizes the M>’s operation.

Like any module, the M> handles requests and produces
responses. However, these requests are essentially meta-
requests, e.g., “create submodule S”” and “submit request r to
submodule S.” Before we discuss how the M3 handles these
requests, it will be helpful to describe what state it keeps for
each submodule and how it can invoke submodules. Then,
we will describe how the M? handles its meta-level requests.
Finally, we will discuss a mechanism to prevent submodules
from denying service to other submodules despite their
shared reliance on the M?>.
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Submodule request execution via the module-management module (M?): (1) The untrusted system executes an M> request, which involves

sending the M> an M? snapshot and M> request. (2) The M> executes the request as much as it can without invoking the submodule. If the submodule
information is valid, it increments the history length for the submodule. (3) It now loads the submodule’s code and jumps to its execute routine, passing
in various parameters, as well as the new M3 snapshot. (4) The submodule executes the submodule request. (5) The submodule returns to the untrusted
system its new snapshot and its response to the request. It also returns the new M> snapshot it received earlier.

Handle | Code hash Keys [ History length |
1 EOB3... 8D98... 15
2 66FF ... B345... 3
3 1408... 84D3. .. 104

Figure 8. An example of the state M> maintains for each submodule.
“Keys” refers to the submodule’s symmetric key and asymmetric key pair.

The M3 state. For each submodule, the M?’s state consists
of the following: a handle to identify it, a hash of its
code, its symmetric key, its asymmetric key pair, and its
history length, i.e., the number of requests it has executed.
An example M3 state is shown in Figure 8. Note that
the M>’s state need not include the submodule’s history
summary, since all submodule requests are implicitly part
of M?’s protected history. Thus, submodules only need to
tag snapshots with the current history length, instead of the
current history summary.

Invoking submodules. The M3 can, given a submodule’s
code as an input, jump to it and supply inputs to it. Before
doing so, it clears its secrets from memory and extends a
dynamic measurement PCR with the submodule code’s hash.
The latter prevents the submodule from impersonating the
M3 or accessing its NVRAM location.

Creating submodules. To create a submodule S, the client
supplies the M> with S’s code as input. The M? then creates
a new handle, symmetric key, and asymmetric key pair for
S, and adds the relevant information to its state. It then uses
its PRNG to generate a seed. Finally, it jumps to S’s code,
supplying it an input consisting of the command initialize,
the created keys, and the seed. S uses the seed to initialize
its own PRNG.

Submitting requests to submodules. To submit r to sub-
module S, the client follows the procedure illustrated in
Figure 7. That is, it supplies the M3 with S’s handle, S’s
code, a snapshot from S, and r. The M3, having access to
S’s code hash, symmetric key, and history length, can check
that the code is valid and that the snapshot is authentic and
fresh. If so, the M> increments S’s history length, produces
a new M> snapshot, then jumps to S’s code. It supplies it
with S’s snapshot and keys, as well as the request r.

To re-execute the last submodule request, a client simply
replays its last “submit request” request to the M>. Since
the M> uses Memoir-Basic or Memoir-Opt to ensure state
consistency for its own state, it supports re-execution of re-
quests, including re-execution of an M> request that executes
a submodule request.

Obtaining a submodule’s public key. To get an attested
public key for submodule S, a client first gets an attested
public key for M. It then gets an attestation, signed by the
M?’s public key, linking S’s public key to S’s code hash.
Preventing denial-of-service by a submodule. One wrinkle
is that since the M> jumps directly to a submodule, it cannot
directly pass output to the untrusted system. It must supply
that output as an additional input to the submodule, and
rely on the submodule to include that output along with its
own output, as illustrated in Figure 7. This means that one
faulty submodule can cause denial of service to all other
submodules by eliding or corrupting the M>’s snapshot in
its own output.

To deal with this issue, we add the following capability.
The untrusted system can readily figure out that it is the
victim of an uncooperative submodule from the fact that
the M? produces an error output when it is subsequently
invoked. In this case, we allow the untrusted system to
invoke the M> in a special way, telling it to repeat the
last M> request but suppress any submodule output. This
is safe, since it gives the untrusted system less information
than it could legitimately ask for. When the M? is invoked
this way, it needs not jump to the submodule to obtain any
output. Thus, the M> can give its output directly to the
untrusted system, thereby allowing it to continue using the
remaining non-faulty submodules, as well as to delete the
faulty submodule.

E. Using Larger-TCB Systems

Up to this point, we have been assuming a minimal-
TCB protection system that provides limited functionality to
trusted modules. However, our approach can be generalized
and made useful even on protection systems that include a
larger TCB.



Using enduring protected volatile memory. If the TCB
includes an operating system or virtual machine monitor,
it can be relied on even when the protected module is not
running. Thus, it can extend protections on volatile memory
beyond the duration of a protected module’s invocation. This
memory is not much use in assuring crash resilience, since
it goes away whenever the system shuts down or resets.
Thus, all the novel protections of Memoir are still necessary:
deterministic modules, secure and concise history storage,
and protection against malicious rollbacks disguised as re-
boots. However, whether using Memoir-Basic or Memoir-
Opt, Memoir can use the enduring memory to improve
performance by keeping the module’s state in memory across
invocations.

In particular, Memoir can skip most of the steps of
execution depicted in Figure 5. It can skip steps 2, 4, 5, 7,
8, and 10; and, it does not have to transmit state snapshots
in steps 3 and 9. Although these steps do not have to be
performed on every request, they still need to be performed
occasionally. As we will now discuss, we need these steps
to obtain periodic snapshots and to recover from shutdowns
and resets.

When the system resumes after a shutdown or reset,
Memoir will need to restore the module’s state. This is why
Memoir’s techniques remain relevant: they enable restoration
without allowing an adversary to misuse the procedure to
perform a rollback attack. To restore state, the Memoir tools
present to MemoirLib the latest snapshot and, since there
may have been more than one request since then, the full
sequence of requests that have happened since the snapshot.
Now, MemoirLib can check that the snapshot and requests
represent the true history by running:

s < AllegedSnapshotTag

For each supplied alleged request r, in order presented:

s < Hash(s, r)
If s # CurrentHistorySummary, reject

If the check succeeds, MemoirLib restores the module’s state
by deserializing the snapshot and replaying the requests.

Since replay takes a long time if the sequence of requests
is long, the Memoir tools should have a policy for obtaining
periodic snapshots, e.g., obtain one after every 100th request.
Using unprotected, nonvolatile storage. If the TCB in-
cludes components such as disk drivers and file systems,
a protected module may have access to a large amount of
unprotected, nonvolatile storage. If this is the case, then
Memoir would not ever have to pass state snapshots back and
forth between the unprotected system and module. It could
write them to disk from within the module itself. However, it
would still have to use all of Memoir’s techniques to ensure
the freshness of this data, as an adversary could overwrite
snapshots on disk with old ones.
Using software-protected, nonvolatile storage. If the TCB
is larger still, it might protect large, nonvolatile storage even
when the protected module is not running. For instance, the

TCB might include an OS or VMM, plus a facility like
secure boot that ensures no other system can be loaded.
However, even in this case, Memoir would still be useful
in defending against a disk-cloning attack. To prepare for
this attack, an adversary physically disconnects the disk and
copies some of its contents to another disk. To perform
the attack, he rolls back the protected module’s storage on
disk to its earlier contents. The freshness assurance provided
by Memoir would detect this attack and prevent it from
working.

F. Suggested TPM Improvement

The main limitation of Memoir is that it requires ac-
cess to slow, write-cycle-limited NVRAM on every request.
Memoir-Opt fixes this, but at the cost of requiring a UPS
for crash resilience. If we could change one thing about the
TPM, it would be to make NVRAM fast and write-cycle-
unlimited. A practical way to achieve this is via a small
write-back cache.

By this, we mean that the TPM should include a small
amount of access-controlled RAM that functions as a write-
back cache of NVRAM. It would then also need a capacitor,
to store enough energy to ensure the RAM gets flushed
to NVRAM when the power goes out. By doing this, the
TPM would achieve the same non-volatility that NVRAM
has today, but with much faster access times, and with
write-cycle limitations that constrain only the number of
shutdowns rather than the number of writes.

With the multiple-module design of §III-D, Memoir only
needs enough such fast-writable NVRAM to store a hash.
Thus, only a tiny amount of RAM and capacitance would
be needed to effect this change.

Incidentally, the TPM specification already requires at
least one volatile register to be flushed upon power-down,
namely the volatile state register used in random number
generation [37]. Since our suggestion requires a very similar
capability, we believe it could be practically implemented.

IV. FORMAL PROOFS OF SAFETY

To ensure the correctness of our design, we developed
formal safety proofs using TLA+ [19]. Although the proofs
were constructed manually, they are mathematically precise,
and they have been programmatically machine-verified using
the TLA+ Proof System [7]. The proofs include 243 defi-
nitions, 74 named theorems, and 5816 discrete proof steps.
The formal specifications and proofs are published in a 390-
page tech report [10] as a companion to the present paper.

We follow a proof approach encouraged by TLA+: Rather
than asserting a particular set of safety properties that happen
to occur to us, we define a high-level specification that de-
scribes the intended semantics of the system. Since Memoir
is a platform that supports arbitrary services, our high-level
spec declares the service to be an undefined function that
maps a state and a request to a state and a response. In



TLA+, state changes are defined by actions, and our high-
level spec contains one main action, AdvanceState, which
invokes the service function. To ensure state continuity, the
service function’s next input state is always set equal to its
most recent output state.

The high-level spec contains a second action, which
models the fact that some requests might not be known
to the user that invokes the service. For example, if the
service is used to redeem cryptographically signed tokens,
the user may have incomplete and time-varying knowledge
about the set of valid tokens. The high-level spec asserts
that the AdvanceState action may only process requests
that are available, and the action MakeRequestAvailable sets
this attribute for a particular request. This action might, for
example, correspond to an out-of-band transaction in which
the user pays money in exchange for a signed token, thereby
enabling the user to submit a request containing that token.

We define two low-level specs, one for Memoir-
Basic and one for Memoir-Opt. The Memoir-Basic
spec contains variables that model the disk, the RAM,
and the TPM’s NVRAM. There are seven actions:
The MakeOperationAvailable action is an abstraction
that directly corresponds to a MakeRequestAvailable ac-
tion in the high-level spec. The PerformOperation and
RepeatOperation actions read and write the RAM and
NVRAM in the manner described in §III-B. ReadDisk and
WriteDisk exchange data between the disk and the RAM.
The Restart action clears the RAM.

The seventh action is CorruptRAM. This models a mali-
cious user’s ability to put nearly arbitrary values in the RAM
before invoking Memoir. The only restriction on the RAM
values is that any authenticator in the RAM must be either
(1) an authenticator that Memoir has previously returned to
the user or (2) a MAC generated with a symmetric key other
than the key stored in Memoir’'s NVRAM.

The Memoir-Opt spec is similar to the Memoir-Basic
spec, with an additional variable to model a PCR. The spec
contains the seven actions as above, modified to reflect the
design described in Section III-C. As a minor example,
the Restart action not only clears the RAM but also re-
sets the PCR. This spec also adds two new actions: The
TakeCheckpoint action models the checkpoint routine, and
the CorruptPCR action models an attacker’s ability to extend
the PCR.

We prove that the Memoir-Basic spec implements the
high-level spec: Any sequence of actions in the Memoir-
Basic spec corresponds to a legal sequence of actions in
the high-level spec. In particular, MakeOperationAvailable
corresponds to MakeRequestAvailable; PerformQOperation
corresponds to AdvanceState; and the remaining five low-
level actions have no effect on the high-level variables.
Finally, we prove that the Memoir-Opt spec implements
the Memoir-Basic spec, which transitively implies that it
implements the high-level spec.

V. IMPLEMENTATION

In this section, we describe our implementation of Memoir
(§V-A) and the modules that use it (§V-B).

A. Memoir

We have fully implemented both Memoir-Basic and
Memoir-Opt, though not the extensions discussed in §III-D
and SIII-E, nor the setup of the Memoir-Opt checkpoint
routine as an SMI handler. Not counting cryptography code
we borrowed, this took 1,055 lines of C for the Memoir
tools and 1,831 lines of C for MemoirLib, as measured
by SLOCCount [39]. We have also implemented variants
of Memoir that turn off various features, largely for use
in benchmarking. These variants are enabled by compiling
MemoirLib with different flags. Thus, one can turn off
all state protection, including confidentiality, integrity, and
freshness. One can also turn off only freshness protection.
And, independently, one can turn off the automatic pro-
visioning of the asymmetric key pair, a setting useful for
services that do not need remote verification.

We built Memoir using the Flicker protection frame-
work [24], since it has the smallest available TCB. We made
a few modifications to Flicker to make Memoir and our
applications work. (1) We increased the space allocated for
input and output from 4 KB to 120 KB each, to accommo-
date large state snapshots. (2) We made Flicker clear the TS
bit of CRO before launching the protected module, so that
the module can use floating-point instructions. (3) We built
a Flicker simulator, using 1,169 lines of C++, that runs in
Windows and allows debugging via Visual Studio. This was
of great help, since typically debugging in Flicker requires
a long iterated-print £ approach. Note that all evaluations
in §VI run in the real Flicker framework, not the simulated
environment.

For cryptographic operations, we used existing C code:
Lutz Jénicke’s PRNGD and SHA, the PolarSSL implemen-
tation of RSA, and Vincent Rijmen’s AES. IBM’s software
TPM implementation [14] was invaluable for debugging
purposes. We use a 4-KB PRNGD state size, 1024-bit RSA
keys, 128-bit AES keys, SHA-1 hashes, and HMAC-SHAI.
We would have preferred to use a more secure hash function,
but the TPM only supports SHA-1 [37]. Fortunately, the next
version of the TPM specification plans to use other, more
secure algorithms [38].

We found the TPM’s random number generation some-
what slow, so we implemented the following optimization
to avoid the need to use it on every request. Normally,
encrypting a state snapshot requires generating a random
initialization vector (IV). However, to save time, we instead
produce the IV using the PRNG, whose state afterward
becomes part of the snapshot. This is safe because the PRNG
output is unpredictable to the untrusted system, and because
we never encrypt two different state snapshots with the same
IV. This latter property stems from the fact that Memoir



makes the system progress through a deterministic series of
states, and from the fact that the PRNG part of the state
advances each time to produce the IV.

As another optimization, we permit a service to serialize
its state into two buffers, one for private data and one
for public data. MemoirLib does not encrypt the public
data, though it does include that data when computing the
authenticator.

B. Modules

Our TrInc module creates, deletes, and updates virtual
monotonic counters. It implements TrInc, which is designed
to prevent equivocation in distributed systems [20]. After
updating a counter, TrInc returns a signed certificate
associating the counter ID and the old and new values
of the counter with a message hash given in the request.
Since TrInc’s counters are monotonic, certificates cannot
associate the counter’s transition from n—1 to n with
two different message hashes. This is useful for preventing
equivocation, since it stops a faulty node from sending
different messages with the same sequence number 7 to
different nodes. Our TrInc module is simpler than Trlnc
as proposed [20], in two ways. It needs no recent attestation
queue to prevent lost outputs since Memoir prevents those
as a side effect of preventing lost snapshots. It also lacks
symmetric-key support because it is not as useful in our
context: Memoir lets the CPU generate signatures rather than
slow trusted hardware.

DiffPriv calculates differentially private statistics [11]
over an encrypted database that untrusted code cannot read.
The untrusted code stores the potentially large database on
disk and feeds encrypted records to the trusted module,
which performs an aggregate calculation over the blinded
records. DiffPriv assumes that each database record has a
timestamp, a unique identifier, and an integer data field; in a
real database, this might be a patient’s white blood cell count
or a user’s interest in a set of goods. To query the database,
untrusted code specifies the timestamp range over which to
query, the operation to calculate over the tuples in that range,
and the number of privacy tokens [11] to spend. DiffPriv
associates each database with a privacy budget, and once the
untrusted code has exhausted this budget, it can no longer
query the database. This prevents an attacker from issuing
many queries and using statistical techniques to remove the
noise from the query results. Currently, DiffPriv only
provides the average () aggregator, but implementing
more complex statistics is straightforward.

PassProtect is a module for safeguarding password-
protected data. At initialization, it is passed a secret blob,
a low-entropy password, and a high-entropy password. Sub-
sequently, untrusted code accesses the blob by submitting
the low-entropy password to PassProtect. After three
incorrect submissions, PassProtect will only release the
blob upon reception of the high-entropy password. After the

Code Line count
Memoir tools 3,874
Memoir tools, excluding crypto 1,055
MemoirLib 6,526
MemoirLib, excluding crypto 1,831

Table 1
MEMOIR CODE SIZE, MEASURED BY SLOCCOUNT [39]

correct high-entropy password is submitted, PassProtect
allows the low-entropy password to release the blob again.
This multi-tier authentication scheme is similar to the
PIN+recovery password model that BitLocker [25] uses to
protect disk encryption keys.

In all three modules, a successful rollback attack is devas-
tating. If an attacker can roll back TrInc, he can generate
multiple attested messages with the same counter value,
allowing him to equivocate. By rolling back DiffPriv,
an attacker can arbitrarily respend his privacy budget and
gather enough data to remove the statistical noise that hides
individual records. By rolling back PassProtect, an
adversary can launch a brute-force attack on the low-entropy
password.

To aid benchmarking, we built a Noop module that does
nothing but has 1 KB of service state it treats as private.

VI. EVALUATION

In this section, we evaluate our Memoir implementation
on Linux, demonstrating that it provides fast, secure per-
sistence for trusted modules. First, we show that Memoir’s
trusted computing base is similar in size to Flicker’s TCB,
even though Memoir provides much stronger correctness
guarantees. We then run microbenchmarks on a variety of
popular TPMs, quantifying the slowness of trusted hard-
ware operations and motivating the Memoir optimizations
described in §III-C. Finally, we present the results of exper-
iments on our Memoir implementation. These experiments
show the overhead of various Memoir features, the time
to perform various Memoir operations, and the end-to-end
performance seen by applications using Memoir-protected
modules.

We perform the Memoir experiments on an HP Compaq
6005 Pro PC running Linux 2.6.31. This system has a
3.0 GHz AMD Athlon II X2 CPU, 2.0 GB of memory, a
160 GB SATA disk, and an Infineon TPM. Since Flicker
does not support multiprocessors, we disable all but one of
the processors.

A. Size of Trusted Computing Base

Table I shows the line counts for different parts of
Memoir, as measured by SLOCCount [39]. Note that the
MemoirLib code base is shared between Memoir-Basic and
Memoir-Opt, using compile-time macros to create one or the
other library. The table shows that the Memoir tools are only
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3,874 lines, of which all but 1,055 are well-tested, borrowed
crypto code. This code runs as root but not within a protected
module, so bugs here can deny service to modules but not
undermine their protection. The MemoirLib code base, in
contrast, is part of the TCB for a protected module. It has
6,526 lines, all but 1,831 of which are well-tested, borrowed
crypto code. The small size of MemoirLib indicates that our
design and implementation are consistent with our goal of
protection through a minimal TCB.

B. Hardware Microbenchmarks

To better understand the performance implications of
using various TPM operations, we performed a series of
microbenchmarks on three TPMs: an Infineon v1.2 rev 3.16,
an Atmel v1.2 rev 154, and an STMicro v1.2 rev 4.30.
We extended the jTSS suite [36] to include support for the
TPM’s NVRAM, monotonic counters, and random number
generator. We also instrumented the TPM kernel driver to
collect timing information for each command sent to the
TPM.

Figure 9 summarizes our results from 100 trials. Writing
NVRAM takes 3-6 times as long as reading it. Even the
TPM with the slowest write time (the STMicro at 82.4ms),
would exhaust its expected 100k writes in less than three
hours, if an application wrote as fast as it could. Incre-
menting a monotonic counter is also relatively slow (30.2—
67.5ms), and our measurements indicate that the Infineon
rate-limits increments to one every 3.55 seconds, while the
Atmel limits increments to one every 4.12 seconds. Contrary
to the TPM specification [37], the STMicro does not appear
to impose any rate limit, running the risk of the counter
rolling over or simply ceasing to function when it reaches
its maximum value. To better show the relative performance
of these operations, Figure 9 omits the times for Quote
(756.0ms, 791.9ms, and 362.3ms for the Infineon, Atmel,
and STMicro, respectively). Generating a quote entails a
2048-bit RSA operation on a resource-impoverished device,
S0 its cost is unsurprising.
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Figure 10. Breakdown of mean request execution time for the Noop
module. Legend excludes parts so short as to be invisible. Error bars, some
of which are too small to see, represent 95% confidence intervals.

C. Effect of Memoir Features on Request Execution Time

In this subsection, we measure the effect of various
features Memoir offers. To measure the overhead of rollback
resistance, we compare Memoir-Basic to a stripped-down
version that provides confidentiality and integrity but not
rollback resistance. To measure the overhead of providing
confidentiality and integrity, we compare to a minimal
version that provides no state protection at all. To measure
the savings from our PCR-based performance optimization,
we compare to Memoir-Opt.

In all experiments, we perform 1000 request executions of
the noop module configured with 1 KB of service state. We
used the rdtsc instruction to record where time is spent.

Figure 10 shows the results. Without any state protection,
the cost is essentially just the inherent cost of launching a
protection module in Flicker, about 50 ms. Confidentiality
and integrity protection costs an additional 7 ms, mostly due
to the cost of reading the symmetric key out of NVRAM.
Rollback resistance costs an additional 76 ms beyond that,
essentially all due to synchronously writing the request
to disk (43 ms) before invoking the module and writing
NVRAM to store the 20-byte history summary (33 ms).
Finally, Memoir-Opt saves 17 ms compared to Memoir-
Basic, because it avoids the NVRAM write but incurs an
additional 16 ms to read and extend the PCR.

Another difference between Memoir-Basic and Memoir-
Opt is that the former uses up the limited write cycles of
the NVRAM far more rapidly. The best way to evaluate this
would be to compare them on the basis of average time to
computer failure, but we lacked the time and resources to
conduct such an experiment.

A large part of request execution time in Memoir is the
time to synchronously write the request to disk. This time
could be substantially reduced if we instead used a solid-
state disk or USB flash drive. This would involve NVRAM
writes, but to untrusted, inexpensive, high-capacity storage
rather than the TPM’s trusted, precious, low-performance
NVRAM.
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D. Other Memoir Operations

Next, we evaluate how long it takes to perform other
Memoir operations besides request execution: creating a
module, obtaining a module’s attested public key, and in-
voking the checkpoint routine in anticipation of shutdown.
These operations are less performance critical, since they
happen infrequently. For each experiment, we run 1000 trials
using the Noop module with Memoir-Opt.

Figure 11 shows the results. Creating a module takes
the most time, 372 ms, because it involves an expensive
RSA key generation. Obtaining an attested public key takes
430 ms since it not only needs to invoke Flicker, it must also
request a quote from the TPM. Finally, the checkpoint rou-
tine takes 102 ms, mostly to invoke Flicker, read NVRAM
and the PCR, and update the NVRAM.

E. End-to-End Application Time

Finally, we illustrate the end-to-end performance appli-
cations can expect from protected modules in Memoir.
For this, we install our three application modules, TrInc,
DiffPriv, and PassProtect, and evaluate how long it
takes them to execute a single request with Memoir-Basic
or Memoir-Opt. For TrInc, the request is to increment a
counter and produce an attestation; for DiffPriv, it is to
incorporate a private datum into a running aggregate query;
for PassProtect, it is to verify a correct low-entropy
password. We perform 1000 request executions for each
module on each of Memoir-Basic and Memoir-Opt.

Figure 12 shows the results. We see that the main differ-
ences among modules are due to two factors: synchronous
disk writing and request execution. The synchronous disk
write takes different amounts of time for each module
because each writes a different amount of data to a different
location on the disk. Request execution takes about 5 ms in
TrInc, but negligible time for each of the other modules.
This is as expected, since TrInc performs a public-key
signature operation for each request. Note, though, that this
time is significantly less than would be incurred to generate
the signature on the TPM itself. This demonstrates the utility
of running protected modules on the CPU.

VII. RELATED WORK

A variety of protected module architectures have been
proposed, though none explicitly seek to achieve state con-
tinuity. Hence, they seldom include properties like rollback
resistance and crash resilience. Nonetheless, these solutions
are compelling isolation mechanisms that could complement
our techniques for preserving state continuity.

A. Large Trusted Computing Bases (TCBs)

A number of previous architectures include considerable
device driver and other systems code in the TCB. For
example, many depend on a full commercial Virtual Machine
Monitor (VMM) and its respective management OS (e.g.,
domain O for Xen), which is typically based on a monolithic
kernel. Even in slimmer designs, device driver software
generally remains in the Trusted Computing Base, since even
if the driver code runs at a reduced privilege level, it still
handles data on which protected modules’ security properties
depend. There is also generally no facility for allowing a
module to avoid trusting drivers it does not use if other parts
of the system require those drivers. Driver code is often the
buggiest code in the system [34], and including it still leaves
open the possibility of rollback attacks (see SIII-E).

KVM/370 [13] and the VAX VMM Security Kernel [17]
were two early examples of protected modules that suffer
from these limitations. These systems both included block
device support in the TCB. More recent examples of systems
with these drawbacks include Enforcer [22], Terra [12],
Proxos [35], and Overshadow [8].



B. Tiny Trusted Computing Bases (TCBs)

Other researchers have investigated approaches to mini-
mizing the TCB for protected modules.

Singaravelu et al. develop the Nizza security architecture
based on the L4 microkernel [33]. Nizza is able to protect
security-sensitive AppCores by running them directly on L4,
while the remainder of the legacy software environment runs
in a sandbox VM. This is also a compelling architecture,
but it does not include any mechanisms for protecting
application state against rollback attacks.

TrustVisor [23] and P-MAPS [31] are special-purpose
hypervisors that can be loaded on demand. They support
a single legacy guest environment, and exist primarily to
offer the ability to protect sensitive application code. While
these architectures offer a compelling foundation, they do
not explicitly include any rollback-resistance mechanisms
to protect the nonvolatile state of sensitive code.

Applications built on Flicker [24] or TrustVisor [23] can
leverage access to the TPM’s monotonic counter for rollback
resistance, but the risk of a crash remains. Nizza [33] and
P-MAPS [31] also do not explicitly treat the issue of crash
resilience for the state of sensitive code, and thus based on
the information we have available we conclude they also
suffer from a lack of crash resilience.

C. Applications of Protected Modules

Attested, Append-Only Memory (A2M) is a proposal for
a trusted log facility that can be used to prevent adversaries
from equivocating (lying differently to different parties) in a
distributed system, thereby greatly improving efficiency [9].
The TrInc [20] system improves A2M by showing that a
trusted counter on each node is sufficient to detect equiv-
ocation. Our framework enables a scalable, performant im-
plementation of TrInc on today’s TPM-equipped platforms.

Sarmenta et al. show how to achieve multiple virtual
monotonic counters using TPMs available today, without
trusting any OS code [32]. Since their TPM-based solutions
have poor performance and are unable to offer support for
count-limited objects (e.g., n-time use keys), they propose
significant changes to the TPM. We show that by adding
a small amount of trusted code, we can achieve secure,
efficient versions of their protocols using only hardware
features available in today’s TPMs.

Berger et al. discuss some of the challenges involved in
virtualizing the TPM [6]. Their solutions rely on a large
VMM (or an expensive secure co-processor), and they do
not consider the problem of state continuity.

Katzenbeisser et al. propose extensions to the TPM spec-
ification to support revocation of TPM keys [18]. With
current TPMs, an attacker who acquires both the access
rights to a key and the encrypted version of the key can
employ the key in perpetuity. They propose both whitelist-
and blacklist-based solutions, but both incur overhead linear
in the number of keys on the respective list, and they require

changes to the TPM chip. Memoir could provide similar
properties with constant time and space overhead and does
not require hardware changes.

VIII. CONCLUSION

We have presented Memoir, a system for assuring state
continuity for protected modules. By tagging each snapshot
that leaves the protection boundary with its history summary,
Memoir can determine whether a snapshot read back from
the untrusted external world is still fresh. Tagging a snapshot
with a history summary enables safe identification and
replay of previous requests, and hence crash resilience.
Our Memoir-Opt design achieves state continuity with little
performance overhead on modern hardware, and we propose
additional techniques for even better performance via larger-
TCB protection frameworks or improved hardware design.
We also describe how to support an unlimited number
of modules with a constant amount of trusted memory.
We formally prove the correctness of our protocols, and
demonstrate the utility of our approach by building three
applications that demand state continuity for security. Mem-
oir made these protected modules easy to build, by freeing
their developers from dealing with issues of assuring state
continuity.
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