
PACE: A New Approach to
Dynamic Voltage Scaling

Jacob R. Lorch, Member, IEEE, and Alan Jay Smith, Fellow, IEEE

Abstract—By dynamically varying CPU speed and voltage, it is possible to save significant amounts of energy while still meeting

prespecified soft or hard deadlines for tasks; numerous algorithms have been published with this goal. We show that it is possible to

modify any voltage scaling algorithm to minimize energy use without affecting perceived performance and present a formula to do so

optimally. Because this formula specifies increased speed as the task progresses, we call this approach PACE (Processor

Acceleration to Conserve Energy). This optimal formula depends on the probability distribution of the task’s work requirement and

requires that the speed be varied continuously. We therefore present methods for estimating the task work distribution and evaluate

how effective they are on a variety of real workloads. We also show how to approximate the optimal continuous schedule with one that

changes speed a limited number of times. Using these methods, we find we can apply PACE practically and efficiently. Furthermore,

PACE is extremely effective: Simulations using real workloads and the standard model for energy consumption as a function of voltage

show that PACE can reduce the CPU energy consumption of existing algorithms by up to 49.5 percent, with an average of 20.6 percent,

without any effect on perceived performance. The consequent PACE-modified algorithms reduce CPU energy consumption by an

average of 65.4 percent relative to no dynamic voltage scaling, as opposed to only 54.3 percent without PACE.

Index Terms—Dynamic voltage scaling, energy management, power management, optimization algorithm.

�

1 INTRODUCTION

THE growing popularity of mobile computing devices has
made energy management important for modern

systems. Designers of laptops, ultraportables, and personal
digital assistants must ensure those devices deliver reason-
able battery life. A relatively recent energy-saving technol-
ogy is dynamic voltage scaling (DVS), which allows software
to dynamically alter the voltage of the processor. Various
chip makers, including Transmeta, AMD, and Intel, have
recently announced and sold processors with this feature.

Reducing CPU voltage can reduce CPU energy con-

sumption substantially since energy consumption is pro-

portional to the square of the voltage (E / V 2) [18].

Performance, however, suffers; the highest speed at which

the processor will run correctly drops as the voltage

decreases. According to theoretical models, the maximum

speed should drop roughly proportionally to the voltage

(s / V) [17]. Voltage scaling processors introduced to date

have not fully followed this model, but they still require

lower speeds at lower voltages [10].
There are two factors that limit the utility of trading

lower performance for energy savings. First, a user wants

the performance for which he paid. Second, other computer

components, such as the disk, display, and backlight, also

consume power. If they stay on longer because the CPU

runs more slowly, the overall effect can be worse

performance and increased energy consumption. Thus, a
voltage scaling algorithm should generally reduce the
voltage only when it will not noticeably affect performance.

A natural way to express this goal is to consider the
computer’s activity to consist of a set of tasks, each of which
has a soft or hard deadline. If the deadline is hard, the task
must complete by then; if the deadline is soft, the task
should have a high probability of completing by then, but
this probability does not have to be 1.0. For example, user
interface studies have shown that user think time is
unaffected by response time as long as response time is
under 50-100 ms [14], so it is reasonable to consider the soft
deadline for handling a user interface event to be 50 ms. As
another example, multimedia programs that operate on
real-time streams or that have limited buffering need to
complete processing a frame in time equal to the inverse of
the display rate. When goals can be codified this way, the
job of a dynamic voltage scaling algorithm is to run the CPU
just fast enough to meet the deadline requirements.

The key property of a deadline, whether it is hard or soft,
is that, as long as a task completes by its deadline, its actual
completion time does not matter. This means that, if we run
the task more slowly, but it still completes by its deadline,
performance is unaffected. The primary goal of the work
presented in this paper is to improve voltage scaling
algorithms so that their performance remains the same,
but their energy consumption goes down.

If a task’s CPU requirement is known, the system can
minimize energy consumption by running the CPU at a
constant speed just fast enough to finish the task by its
deadline [17]. Previously published algorithms have been
implicitly based on the belief, therefore, that, even when a
task’s CPU requirement is unknown, a desirable (i.e.,
energy-minimizing) schedule is one that minimizes the

856 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

. J.R. Lorch is with Microsoft Research, 1 Microsoft Way, Redmond, WA
98052. E-mail: lorch at microsoft.com.

. A.J. Smith is with the Electrical Engineering and Computer Science
Department, Computer Science Division, University of California,
Berkeley, Berkeley, CA 94720-1776. E-mail: smith at eecs.berkeley.edu.

Manuscript received 2 Oct. 2001; revised 28 Feb. 2003; accepted 21 Nov.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115127.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

frequency of changes in speed and voltage. In fact, when the
task’s CPU requirement is known only probabilistically, we
will show that a constant speed is not optimal. The expected
energy consumption is in fact minimized by gradually
increasing speed as the task progresses, i.e., as we discover
the task requires more work. We therefore call our approach
for improving algorithms in this way PACE: Processor
Acceleration to Conserve Energy.

We will show mathematically that an optimal schedule
exists for increasing speed in this way. However, there are
two problems with implementing this schedule directly.
First, the schedule depends on knowledge of the probability
distribution of task work requirements. Second, the
schedule describes speed as a continous function of time,
but a practical implementation may not be able to change
CPU speed continuously.

To solve the first problem, we estimate the probability
distribution of task work from the work requirements of
previous, similar tasks. We describe and compare various
methods for this to find some general, practical methods that
achieve good results for a variety of real workloads. To solve
the second problem, we approximate the scheduling function
with a schedule that changes speed a limited number of times.
We present and test heuristics for this as well.

Using trace-driven simulations of real workloads, we
compare the resulting algorithms to previously proposed
algorithms. We show that our algorithms consume sig-
nificantly less energy while achieving equivalent perfor-
mance, in terms of meeting deadlines or finishing at the
same time. Without PACE, existing algorithms use DVS to
reduce CPU energy consumption by 11-94 percent with an
average of 54.3 percent. With the best version of PACE, the
savings increase to 36-96 percent with an average of
65.4 percent. The overall effect is that PACE reduces the
CPU energy consumption of existing algorithms by
1.4-49.5 percent with an average of 20.6 percent. We also
demonstrate that our algorithms are practical and efficient.

PACE is not a complete DVS algorithm by itself; it is a
method for improving such an algorithm. It leaves some
characteristics of that algorithm unchanged, such as which
deadlines it makes and how it schedules tasks that have
missed their deadlines. Thus, different algorithms will still
be different after PACE modifies them. We will compare
these algorithms to show which ones work best when
modified by PACE. Note that PACE itself does not provide
a uniquely desirable means of selecting the probability for
meeting the deadline for each task; the other algorithms we
will discuss make that decision. We explain this issue
further in Section 5.2.

The rest of this paper is structured as follows: Section 2
discusses related work, including algorithms other authors
have proposed for dynamic voltage scaling. Section 3
presents our model of the problem of dynamic voltage
scaling and introduces the terminology for the remainder of
the paper. Section 4 describes how we suggest improving
existing dynamic voltage scaling algorithms. Among other
suggestions, it describes our optimal formula for speed
scheduling using PACE, as well as methods for practically
implementing it. Section 5 describes how algorithms differ
even after modification by PACE and how we can choose

between them. Section 6 presents and discusses results of
simulating our suggested algorithm improvements. Finally,
Section 7 concludes. Section 8 describes supplemental
material for this paper which can be found on the Computer
Society Digital Library at http://computer.org/tc/archives.
htm; see also [9].

Although we explain terms in this paper when we first
present them, the reader may find it helpful to refer to
Table 1 as needed. It summarizes terms used in this paper,
giving their definitions and their abbreviations.

2 RELATED WORK

Weiser et al. [17] observed that doing a fixed amount of
work in fixed time with the least energy requires a constant
CPU speed. They also noted, as we did earlier, that
completing work in a timely manner is important. Based
on this, they recommended interval-based DVS algorithms.
Such algorithms divide time into fixed-length intervals and
set the speed in each interval so that not much work
remains uncompleted when the interval ends. Chan et al.
[4] refined these ideas by separating out the two parts of an
algorithm: prediction and speed-setting. When a new interval
begins, the prediction part predicts the interval’s CPU
utilization, i.e., what fraction of the interval the CPU will be
nonidle. Then, the speed-setting part uses this information
to set the speed for the interval.

Researchers have proposed several methods for the
prediction part, including the following: Weiser et al.’s
[17] Past method predicts the utilization will be the same as
the last interval’s. Chan et al.’s [4] LongShort method
averages the 12 most recent intervals’ utilizations, weight-
ing the most recent three of these three times more than the
other nine. Chan et al.’s [4] Flat-u method always makes
the same prediction, namely, that the utilization will be the
method parameter u.

Researchers have also proposed methods for the speed-
setting part, including the following: Weiser et al.’s [17]
method, which we call Weiser-style, works as follows: If the
upcoming interval’s utilization is predicted to be high
(more than 70 percent), it increases the speed by 20 percent
of the maximum speed. If the upcoming interval’s utiliza-
tion is predicted to be low (less than 50 percent), it
decreases the speed by 60� x percent of the maximum
speed, where x is the upcoming interval’s predicted
utilization as a percentage. Chan et al.’s [4] method, which
we call Chan-style, sets the speed for the upcoming interval
just high enough to complete the predicted work. In other
words, it multiplies the maximum speed by the utilization
to get the speed for the upcoming interval. Finally,
Grunwald et al.’s [5] Peg method either sets the speed to
the minimum possible, keeps it the same, or sets it to the
maximum possible, depending on whether the predicted
utilization is below 93 percent, between 93 percent and
98 percent, or above 98 percent. They determined the
figures 93 percent and 98 percent empirically.

Using interval boundaries as deadlines is somewhat
arbitrary. If a task arrives shortly before an interval
boundary, there is no reason it must complete by the end
of that interval. Furthermore, without discernible deadlines,
there is no reason to complete any given task by a certain

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 857

time.1 Pering et al. [11], recognizing this, suggested
considering deadlines when evaluating DVS algorithms.
They suggested that, when measuring the performance of
an algorithm, one should consider a task that completes
before its deadline to have effectively completed at its
deadline.

Grunwald et al. [5] considered deadlines when they
compared several of the algorithms described above (as
well as others we have not listed) by implementing them on
a real system. They decided that, although none of them are
very good, Past/Peg is the best since it never misses any
deadlines for the workload they considered, yet still saves a
small but significant amount of energy.

Many researchers have explored DVS in real-time
environments, where tasks must complete by certain dead-
lines or their results are useless [2], [12], [13]. In some real-

time scenarios, such as processing network packets, the
deadline is soft since the system can recover from failed
tasks [13]. In other scenarios, the deadline is hard, so the
system scheduler must know and use the task’s worst-case

execution time (WCET) to ensure the CPU runs fast enough
to make the deadline [2], [12].

Pillai and Shin [12] and Aydin et al. [2] have indepen-
dently proposed DVS algorithms for achieving high energy

savings in such real-time environments by using the
following three-stage scheduling process: First, the schedu-
ler computes a static optimal schedule assuming each task

requires its entire WCET. Second, when a task completes
having used less than its WCET, the scheduler uses the

858 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

TABLE 1
Terms Used in This Paper, along with Their Abbreviations and Definitions

1. Without deadlines, it is best to simply measure the average number of
nonidle cycles per second and run the CPU at that speed. Transmeta’s
LongRun2 system uses an approach of that type [6].

slack to create a new schedule for the remaining tasks since
they can now run more slowly and still make their
deadlines. Third, if a task is predicted to be unlikely to
require its WCET, that task is run at a slower speed than the
schedule requires. This way, if the task requires much less
than its WCET, it will save a lot of energy and, even if it
requires more time, it can still make its deadline as long as
the scheduler increases the speed soon enough in the course
of the task’s execution. These researchers found that the
utility of such aggressive speed reduction depends on the
probability distribution of the task’s actual CPU require-
ment and proposed ad hoc methods for accounting for this.
In this paper, we will show that there is an analytically
optimal method for accounting for the probability distribu-
tion of task requirement when choosing how slowly to start
a task and how to increase the CPU speed as it progresses.
However, our method currently can only schedule one task
at a time; future work includes extending our techniques to
deal with simultaneous scheduling of multiple tasks, a
typical feature of real-time scheduling.

For some workloads, the goal is not to have each task
make its individual deadline, but to ensure that the CPU
speed matches the rate at which work is introduced into the
system. An example of a workload emphasizing rate
matching is media playback; media players typically use
buffers, which allow different frames to take different
amounts of time to process as long as the aggregate rate of
processing is sufficient. For buffered workloads like this,
DVS algorithms such as those of Simunic et al. [16] are more
appropriate than those we consider here. These algorithms
use a stochastic model of the task queuing system to ensure
the CPU completes tasks at the required rate.

3 MODEL

3.1 Processor

We model the processor as follows: The processor can attain
any speed between some minimum smin cycles/sec and
maximum smax cycles/sec, inclusive. At each speed, there is
a minimum feasible voltage; we assume it uses that voltage.
Thus, CPU power consumption varies with speed.

We assume power consumption is a strictly convex and
increasing function of speed and energy consumption per
cycle is an increasing function of speed. We define PðsÞ to
be the power in watts at speed s and define EðsÞ to be the
energy consumption in joules per cycle at speed s. Note that
EðsÞ ¼ PðsÞ=s.

We use the glyphs P and E to distinguish them from the
glyphs P and E typically used for power and energy. Our
definitions make clear the dependence of power and energy
on the speed used, while traditional notation does not. In
typical notation, P ðtÞ is the power consumed at time t and
E ¼

R b
a P ðtÞ dt is the energy consumed during some time

interval ½a; b�.

3.2 CPU Scheduling

Now, we describe our model of DVS algorithms. For the
purposes of this paper, we restrict ourselves to algorithms for
scheduling a single task at a time. It is future work to extend
our algorithm to simultaneous scheduling of multiple tasks.

A single-task DVS scheduling algorithm must decide
how quickly to run a task as that task progresses. This task
has some work requirement or, simply, work (W) that is the
number of CPU cycles it will take to complete. The task also
has some deadline (D) that is the number of seconds in
which the algorithm should try to complete the task once
the task is dispatched. The number of seconds the task
actually takes, given the algorithm’s CPU speed choices, is
its completion time. A task’s effective completion time is the
maximum of its completion time and its deadline; this
reflects the fact that, if a task completes by its deadline, it
may as well have completed at its deadline. The task’s delay
is the number of seconds the task takes beyond its deadline,
i.e., its effective completion time minus its deadline. If the
task does not make its deadline, that means it still has work
to do. We call the number of cycles still left to do upon
reaching the deadline the excess.

When a task arrives, an algorithm must decide how fast
to run the CPU to complete it. In general, the algorithm may
choose to vary the CPU speed as the task progresses; for
instance, it might choose to run the CPU at 300 MHz for the
first 10 ms, then 400 MHz for any remaining time. Thus, the
algorithm is actually choosing the speed as a function of
time. We call this function the speed schedule and denote it by
f: fðtÞ is the speed, in cycles per second, that the algorithm
will run the CPU after the task has run for t seconds.

A realizable algorithm cannot know the task’s work
requirement until the task completes. Since it gains no
information about the task’s work requirement as the task
progresses except to know that the task has not yet
completed, it could, in theory, compute the entire schedule
when the task arrives. In practice, an implementation of the
algorithm may not compute fð10Þ until 10 seconds actually
pass, but we consider that fð10Þ is nevertheless defined as
soon as the task arrives. Indeed, even if the task completes
after 5 seconds, fð10Þ is still defined: It is the speed at which
the algorithm would have run the CPU if the task had gone
longer than 10 seconds.

We can think of a speed schedule as consisting of two
parts, the predeadline part and the postdeadline part. The
former is the part of f that describes what happens before
the task reaches its deadline (when t � D) and the latter
describes what happens after the task misses its deadline
(when t > D). A speed schedule has a certain number of
predeadline cycles (PDC), the number of CPU cycles it can
perform before the deadline. This value is determined by
the predeadline part since PDC ¼

RD
0 fðtÞ dt. The PDC is

important because the task will miss its deadline if and only
if its work requirement exceeds the predeadline cycles of
the schedule (i.e., if W > PDC). In particular, if the deadline
is hard, the speed schedule must always have
PDC � WCET, where WCET is the worst-case execution
time expressed in cycles; this ensures that the task
completes by the deadline and that the postdeadline part
is irrelevant.

We say that two speed schedules are performance
equivalent if, no matter what the task’s work requirement,
it will have the same effective completion time no matter
which of the two schedules is used. We call two DVS
algorithms performance equivalent if they always yield

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 859

performance equivalent speed schedules. We make the
following important observation:

If two speed schedules accomplish an equal number of
predeadline cycles and have identical postdeadline parts,
then they are performance equivalent.

Fig. 1 illustrates an example of this. To see that this
observation is true, consider two cases. First, suppose the
task requires no more work than the predeadline cycles the
schedules share. In this case, both schedules make the task
complete by the deadline, so both yield an effective
completion time of D. Next, suppose the task requires
more work than the predeadline cycles. Then, both
schedules leave the task the same excess to do after the
deadline: W � PDC. Since the schedules have identical
postdeadline parts and both have the same excess to do in
that part, both will complete the task at the same time.

This observation is the key to the PACE approach. It
modifies algorithms without changing their predeadline
cycles or their postdeadline parts. Thus, it keeps perfor-
mance the same. However, by strategically choosing the
speed schedule for the predeadline part, it can make the
expected energy consumption lower than the original
algorithm.

It is often useful to consider the schedule as describing
speed as a function of work completed, instead of speed as
a function of time. So, we will sometimes use the function
sðwÞ to describe this schedule, where sðwÞ gives the speed to
use after the task has completed w cycles of work. fðtÞ and
sðwÞ are simply different expressions of the same function; it
is straightforward to convert a function from one style to
the other.

3.3 Performance Metrics

In some parts of this paper, we will need to compare the
performance of algorithms that are not performance
equivalent. For this, we will need performance metrics.
One such metric is the fraction of deadlines made (FDM), the
fraction of all tasks in a workload that meet their deadlines.
A problem with this metric is that sometimes a workload
contains impossible tasks: Tasks so long they could not meet
their deadlines even at the maximum CPU speed (i.e.,
having W > smaxD). Then, the maximum achievable FDM is
not 1, so the goodness of a value of this metric is unclear.
Therefore, we instead use the fraction of possible deadlines
made (FPDM), the fraction of all tasks with possible
deadlines in the workload that make those deadlines.

We also need a metric expressing how undesirable it is to
miss the deadline by various amounts. For example, for a
user interface task, we want a metric of the user’s
“impatience function,” i.e., how undesirable he finds

missing the deadline by various amounts. Several such
penalty functions could be justified. For instance, we could

treat all delay as equally bad or we could have the first few
milliseconds of delay past the deadline incur little penalty
while later milliseconds of delay incur greater penalties.

This penalty could be some quadratic or cubic function of
delay to represent increasing user frustration as deadlines
are missed by greater amounts.

We choose to use the linear metric Pering et al. [11]
suggest, which they call clipped delay. This is the sum of the
effective completion times of all the workload’s tasks. They

justify a linear metric for the following reasons. First, it
theoretically reflects the total response time as perceived by

the user. Second, since user-perceived delays generally lead
to longer operating times, the metric also reflects the time
other power-consuming components, such as the backlight,

must stay on to support the tasks’ operations and, thus, the
energy consumed by those components. A similar metric,
which we prefer because its magnitude is unaffected by the

deadline and the number of tasks, is the average delay

(AvgDelay). This is simply the average of the delays of all

tasks in the workload. Since the average delay is a linear
transformation of the clipped delay, using it yields
equivalent comparisons between algorithms.

4 IMPROVING ALGORITHMS WITH PACE

We now discuss our techniques for improving scaling
algorithms to reduce their energy consumption without

worsening their performance.

4.1 Theoretical Optimal Formula

Suppose some algorithm produces a speed schedule sorig.
We would like to improve this by producing a performance

equivalent speed schedule sequiv with lower expected energy
consumption. To do this, we will update the schedule so
that it performs the same number of cycles by the deadline,

but by running at different speeds before the deadline.
The traditional basis for dynamic speed scheduling

techniques has been keeping speed constant, so it may

seem that the optimal schedule would be to run at a
constant speed. However, as we will now show, the ideal
speed schedule is actually a changing speed. An intuitive

explanation is that, if the task work requirement is
unknown, it may be high or low. It is worthwhile to run

slowly at first because the task may require little work and
thus end before we get to the point where we increase the
speed and, thus, the power consumption. Consider an

example: Suppose a task with hard deadline 50 ms takes
5 Mc (megacycles) 75 percent of the time and 10 Mc
25 percent of the time. Suppose further that CPU power is

50nW � x3 when the speed is x MHz. The ideal constant
speed is 200 MHz, the slowest speed that will always meet

the deadline; this consumes

ð25msÞð200Þ3ð50nWÞ þ ð25%Þð25msÞð200Þ3ð50nWÞ ¼ 12:5mJ

on average. An alternate, variable speed schedule is

163 MHz for the first 30.675 ms, then 259 MHz for any
remaining time; this consumes

860 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 1. This graph shows two performance equivalent speed schedules.

They have equal predeadline cycles (they both accomplish 15 Mc by the

deadline, 50 ms) and they have identical postdeadline parts.

ð30:675msÞð163Þ3ð50nWÞ þ ð25%Þð19:325msÞð259Þ3ð50nWÞ
¼ 10:84mJ

on average, an energy savings of 13.3 percent.
We thus see that the optimal speed schedule depends on

the probability distribution of the task’s work requirement.

We denote the cumulative distribution function (CDF) of

this work by F : F ðwÞ is the probability that the task requires

no more than w cycles of work. The tail distribution

function is denoted Fc: FcðwÞ ¼ 1� F ðwÞ. The qth quantile

of this distribution is the value w such that F ðwÞ ¼ q.
We are trying to minimize the expected energy con-

sumption of the predeadline part of the algorithm, while

keeping the predeadline cycles the same. The expected

energy consumption of a schedule s is equal toR PDC
0 FcðwÞE½sðwÞ� dw by the following reasoning: Consider

the dw cycles of work after the first w; if dw is small, the

speed over this period is approximately constant at sðwÞ.
The energy consumption per cycle is E½sðwÞ� and the

number of cycles is dw, so the energy consumption is

E½sðwÞ� dw. The probability that this work actually ever gets

done is FcðwÞ.
We call a schedule s valid if it stays within the allowed

CPU speed range and we call it equivalent if it has the same

number of predeadline cycles as the original algorithm. We

call a valid equivalent schedule sopt optimal if no other valid

schedule with at least as many predeadline cycles as the

original algorithm has lower expected predeadline energy.

We seek such an optimal schedule.
In this section, we describe the optimal formula without

proof of its optimality; such proofs are presented in

supplemental material for this paper. In those proofs, we

present the continuous improvement lemma, which shows

that, when you hold some integral
R b
a gðwÞ dw constant and

try to minimize some function
R b
a w½gðwÞ� dw, the solution is

to keep 0
w½gðwÞ� as constant as possible. To ensure the

proper predeadline cycles, we require
R PDC
0

1
sðwÞ dw ¼ D; to

minimize energy consumption, we want to minimizeR PDC
0 FcðwÞE½sðwÞ� dw. So, in our scenario, gðwÞ ¼ 1=sðwÞ

and wðxÞ ¼ FcðwÞEð1=xÞ, giving

 0
w ¼ �FcðwÞð1=x2ÞE0ð1=xÞ:

Thus, the solution is to keep

 0
w½gðwÞ� ¼ �FcðwÞ½sðwÞ�2E0½sðwÞ�

as constant as possible. Essentially, then, we want

½sðwÞ�2E0½sðwÞ� ¼ K=FcðwÞ for some constantK, but we must

be careful not to allow speeds outside of the valid range.
One can thus construct an optimal valid schedule as

follows: Define the function

SðpÞ ¼
smin if ps2minE

0ðsminÞ > 1
smax if ps2maxE

0ðsmaxÞ < 1
s 2 ½smin; smax�
such that p s2E0ðsÞ ¼ 1 otherwise;

8>><
>>:

where E0 is the derivative of the energy function E. Next,

find a K > 0 such that

Z PDC

0

1

S½FcðwÞ=K� dw ¼ D:

Finally, construct the speed schedule as soptðwÞ ¼ S½FcðwÞ=K�
for 0 � w � PDC.

In other words, one can form an optimal schedule by
making the predeadline part of soptðwÞ equal to
��1½K=FcðwÞ� bounded to between smin and smax, where
�ðsÞ ¼ s2E0ðsÞ. One chooses this K such that the schedule
achieves the proper number of predeadline cycles. If S and
Fc both have analytic forms, it may be possible to compute
K via a closed-form deterministic algorithm. Otherwise,
one can do a binary search for K over its possible range
ð0; s2maxE

0ðsmaxÞÞ, stopping the search when the PDC of the
resulting solution is acceptably close to the desired PDC.

In the proof, we show that ��1 is an increasing function;
therefore, since FcðwÞ decreases as w increases, this
schedule speeds up the CPU as the task progresses, as
suggested earlier.

If power consumption is proportional to the cube of the
speed, as the typical dynamic voltage scaling model
suggests, then PðsÞ ¼ Cs3 for some constant C. This means
EðsÞ ¼ Cs2, E0ðsÞ ¼ 2Cs, and �ðsÞ ¼ 2Cs3. Thus, the opti-
mal schedule uses soptðwÞ proportional to ½FcðwÞ��1=3. The
optimal constant of proportionality is simply the one that
ensures the schedule performs the required number of
predeadline cycles.

To illustrate the use of this formula, we will show how to
derive the optimal formula for the example shown earlier: a
task with deadline 50 ms that takes 5 Mc 75 percent of the
time and 10 Mc 25 percent of the time. First, observe that

FcðwÞ ¼
1 if w � 5 Mc
0:25 if 5 Mc < w � 10 Mc
0 if w > 10 Mc:

8<
:

So, we want the speed for the first 5 Mc to be proportional
to 1�1=3 ¼ 1 and the speed for the next 5 Mc to be
proportional to 0:25�1=3 ¼ 1:587. To make the deadline, the
constant of proportionality, c ¼ ð2C=KÞ�1=3 must satisfy

D ¼ 0:05sec ¼ 5 Mc

c
þ 5 Mc

1:587c
:

The solution to this equation is c ¼ 163 MHz, meaning we
should use a speed of 163 MHz for the first 5 Mc, then a
speed of 163 � 1:587 ¼ 259 MHz for the next 5 Mc. It takes
30.675 ms to run 5 Mc at 163 MHz, so our schedule is
163 MHz for the first 30.675 ms, then 259 MHz for the
remaining 19.325 ms.

Given any scheduling algorithm, it is worthwhile to
replace its predeadline part with the optimal formula
presented here. In this way, we reduce the expected energy
consumption without affecting performance. We call this
the PACE approach.

4.2 Piecewise Constant Speed Schedules

The optimal formula gives a continuous speed schedule,
which may be unreasonable if software must notify the
hardware each time it wants to change the speed. In
practice, we should probably change speed for a task no
more than some reasonable number of times N . So, we want
a schedule with a limited number of transition points, points

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 861

where the speed may change. We denote the jth transition
point by wj. Note that we are using as transition points
values of w where sðwÞ changes, not points in time where
fðtÞ changes. The latter is more natural, but the former
makes optimization easier.

Given fixed transition points w0; w1; w2; . . . ; wN such that
w0 ¼ 0 and wN ¼ PDC, one can construct a speed schedule
that minimizes expected energy consumption as follows.
(We prove this construction works in our proofs; see
Section 8.) For all i 2 f1; 2; . . . ; Ng, define

Hi ¼
Rwi
wi�1

FcðwÞ dw
wi � wi�1

:

Next, find a K > 0 such that

XN
i¼1

wi � wi�1

SðHi=KÞ ¼ D:

Then, use the speed schedule

soptðwÞ ¼ SðHi=KÞ for wi�1 < w � wi:

Essentially, this uses a speed for each interval as if the tail
distribution function were constant over that interval, set
equal to the average of the true tail distribution function
over that interval.

As before, one chooses the constant of proportionality K
so that the schedule achieves the proper number of
predeadline cycles. If S has an analytic form, it may be
possible to compute K via a closed-form deterministic
algorithm. Otherwise, one can do a binary search for K over
its possible range ð0; s2maxE

0ðsmaxÞÞ, stopping the search
when the PDC of the resulting solution is acceptably close
to the desired PDC.

We also need to choose a “good” sequence ofN transition
points. We want the optimal schedule to vary little between
any two consecutive transition points so that keeping the
speed constant between those points approximates the
optimal schedule. We proceed as follows: For each integer j,
define qj ¼ 1� c�j for some constant c. Then, Fc at the
qjth quantile of F equals c�j. If we use these quantiles as
transition points, then K=FcðwÞ never varies by more than a
factor of c between any two consecutive transition points.
Thus, the optimal speed ��1½K=FcðwÞ� should not vary
much between any two consecutive transition points. In the
particular case where power is proportional to speed cubed
and, thus, the optimal speed is proportional to ½FcðwÞ��1=3,
the optimal speed never varies by more than a factor of c1=3

between any two consecutive transition points.

A problem with this is that, as the sequence fqjg increases,

the qj values get close together and it wastes our limited

supply of speeds to use them. Thus, we terminate this

sequence near qj ¼ 0:95 and pick further values of qj so that

they uniformly partition the remaining range. More pre-

cisely, we set J ¼ N � 3 and Q ¼ 0:95. We set qJ ¼ Q, then

compute c by solving the equation Q ¼ 1� c�J . For each

1 � j � J , we set qj ¼ 1� c�j; for each j > J , we set

qj ¼ Qþ ðj� JÞ 0:995�QN�J . Fig. 2 illustrates how this works.

The choices ofQ and J are arbitrary, but we showed in other

work [8] that there is virtually no change with different

choices as long asQ is somewhere between 0.85 and 0.99 and

as long as N � J is between 3 and 9.
In other work [8], we examined the effect of using different

numbers of transitions N . We found that the principle of
diminishing returns applies: Increasing the number of
transitions becomes less and less worthwhile as the number
of transitions increases. Using 10 transitions yields energy
consumption within 1.2 percent of the minimum. Using 20
transitions reduces the maximum penalty to 0.27 percent and
using 30 transitions reduces it to 0.1 percent. For this paper,
we will use N ¼ 30. Note that using more transitions can be
detrimental if the CPU must halt for a significant amount of
time each time the speed changes; fortunately, processors will
soon not have to do so [3].

To implement a piecewise constant speed schedule,
software must be able to interrupt the task at predetermined
intervals to change the CPU speed. If the hardware can be
programmed to cause an interrupt at a given cycle count,
the algorithm can use this feature. If the system has a high-
frequency hardware timer, the algorithm can use that.
Another method is to use soft timers, an operating system
facility suggested by Aron and Druschel [1] that lets events
be scheduled for the next time one can be performed
cheaply, such as when a system call begins or a hardware
interrupt occurs. This could only work if these events occur
sufficiently frequently. A better way to implement speed
schedules would be to implement them in hardware. For
instance, the processor could accept as input not just a
speed at which to run but a full schedule.

4.3 Distribution Estimation Methods

Implementing PACE requires some way to estimate the
probability distribution of the current task’s work require-
ment. Usually, an application will not provide information
about this distribution, so we must model the distribution
by sampling the work requirements of similar recent tasks.
We assume tasks can be classified into types so that tasks of
the same type have similar work requirements and that we
can keep separate samples for each type. For instance, we
can keep one sample of Microsoft Word tasks triggered by
letter keypresses, another sample of Microsoft Excel tasks
triggered by releasing the left mouse button, etc.

862 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 2. This graph shows the transition points we use in our piecewise
constant approximation to the optimal schedule. Transition points are
described by their CDFs. CDF values less than the knee are spaced so
that consecutive speeds vary by a constant factor; the few CDF values
above the knee are spaced uniformly.

There are two general ways to estimate the distribution
from a sample: parametric and nonparametric [15]. Para-
metric methods assume the distribution belongs to a certain
family of distributions (e.g., normal distributions) and
estimates the parameters that fully specify a member of
that family (e.g., the mean and standard deviation of a
normal distribution). Nonparametric methods make no
such assumption, letting the sample “speak for itself” in
describing the entire distribution.

5 CHOOSING A BASE ALGORITHM

When PACE modifies an algorithm, it leaves two aspects of
that base algorithm intact: what PDC it uses for each task
and what postdeadline schedule it uses for each task. Thus,
different base algorithms will still have different perfor-
mance even after both are improved with PACE. In this
section, we discuss how to choose among base algorithms.

Note that this is largely irrelevant for real-time systems.
There, tasks can never go beyond their deadlines, so
schedules do not need postdeadline parts. Also, in many
real-time environments, deadlines are hard, so there is no
choice in PDC—it must be the worst-case cycle requirement.

5.1 Choosing a Postdeadline Part

First, we consider what the base algorithm for postdeadline
scheduling should be. Unlike earlier, we will not be creating
a performance equivalent algorithm, so we need a
performance metric. Since the postdeadline part has no
influence on the fraction of deadlines made, we use average
delay. We thus want an algorithm that consumes the least
energy for a given average delay.

Let TotalExcess be the total excess of all tasks in the
workload. Note that this is determined by the predeadline
part; we cannot change it in the postdeadline part. To achieve
a certain average delay AvgDelay, we have to perform these
TotalExcess cycles in total time equal to n � AvgDelay, where
n is the number of tasks. As Weiser et al. [17] point out, the
way to do this with minimum energy is to run at constant
speed equal to TotalExcess=ðn �AvgDelayÞ. Another way to
look at this is that, if we use a fixed, constant speed after the
deadline, we are assured that the energy consumption we
achieve is the minimum possible for the achieved average
delay. Therefore, we propose that a scheduling algorithm
pick a fixed speed to use for all its postdeadline schedules.
Many existing algorithms already do this, either because
they always use a fixed speed or because they increase
speed as average recent utilization increases and thus
achieve the maximum CPU speed by the time a task reaches
its deadline.

We must now determine what fixed speed to use in the
postdeadline part. One possibility is to simply use the
maximum available speed. The rationale for this is that,
once a task has missed its deadline, the effective completion
time depends directly on the actual completion time, so the
only way to minimize effective delay is to run at the
maximum speed possible. However, it may be that some
situations warrant a lower fixed speed in the postdeadline
part than the maximum available speed. As evidence,
consider the fact that laptop computers using Intel’s
SpeedStep2 technology permanently lower the speed when

the user is running off of battery power. This suggests that, in
limited-energy scenarios, the user may be content with a lower

maximum speed than the theoretical maximum speed of the
processor.

Another approach is to choose a target average delay,
predict the average excess, and choose a speed that is their
ratio. However, in practice, we have found this approach to
be impractical since two factors make predicting average
excess difficult. First, excess should be nonzero only rarely
since an algorithm will attempt to complete most tasks by
the deadline, so samples of excess will tend to be small until
many tasks have occurred. Second, the distribution of
excess depends strongly on the tail of the task work
distribution and such tails tend to be hard to model.

5.2 Choosing PDC for Each Task

Since PACE does not change PDC, this value is entirely
determined by the choice of base algorithm. In this section,
we consider the optimal way for a base algorithm to
compute PDC given that we will modify that base
algorithm using PACE. In other words, given some target
fraction of deadlines to make, TFDM, we would like to
compute the optimal PDC for each task. This constraint is
interesting because it is a single constraint on all tasks in the
workload rather than one constraint per task. Therefore, we
have great freedom in choosing the PDC values; for
instance, we might decrease the PDC of one task, thereby
increasing its probability of missing its deadline, and make
up for that by increasing the PDC of another task, thereby
decreasing its probability of missing its deadline.

We can describe the optimization problem mathemati-
cally as follows: Suppose we want to optimize the aggregate
performance and energy consumption of a certain number
n of consecutive tasks. If we denote the distribution of task i
by Fi, we want to choose a PDCi for each task i to minimize
the expected energy consumption, which is proportional to

Xn
i¼0

Z PDCi

0

Fc
i ðwÞEðS½FcðwÞ=KðFi;PDCiÞ�Þ dw

�

þ
Z 1

PDCi

F c
i ðwÞs2max dw

�
;

subject to the constraint that we must expect to make a
fraction TFDM of the deadlines:

Xn
i¼0

FiðPDCiÞ ¼ n � TFDM:

Here, we use KðFi;PDCiÞ to denote the PACE scaling
factor K that depends on Fi and PDCi.

Unfortunately, we cannot solve this optimization pro-
blem, for two reasons. First, the complex dependence of K
on PDCi makes optimizing this quantity intractable.
Second, even if we had an analytical solution, it would still
depend on all of the work distributions simultaneously.
Therefore, we would need to plug in a model of the
distribution of distributions, i.e., a model of the nonstatio-
narity of the work distribution, and we know of no
reasonable way to model this.

These problems also make it impossible to analytically
determine how well a given algorithm for computing PDC

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 863

will work from a standpoint of energy consumption versus
performance. Therefore, we must rely on empirical, rather
than analytic, methods to compare such algorithms. We
consider several methods for computing PDC and present
results comparing them in Section 6.2.2. Most of these
algorithms are simply previously published DVS algo-
rithms; in other words, we compute the PDC for each task
by computing the PDC of the schedule that the previously
published algorithm would generate.

One interesting distinction between these existing algo-
rithms is that, for some, such as Flat/Chan-style, PDC is
independent of the current task work distribution, while,
for others, such as LongShort/Chan-style, PDC is not.
(Flat/Chan-style uses a constant speed, so its PDC is the
same for all tasks regardless of the current work distribu-
tion: PDC is always the constant speed times the deadline.
LongShort/Chan-style uses a speed proportional to recent
utilization, so its PDC is higher when recent tasks have been
long.) The former type will tend to miss the deadlines of the
longest tasks in the workload, so we call them global. The
latter type will tend to miss the deadlines of tasks whose
work requirements are local maxima, i.e., tasks whose work
requirements seem high when compared only to recent
tasks, so we call these local algorithms. When the distribu-
tion is nonstationary, as frequently occurs, global
approaches will tend to miss a different set of tasks’
deadlines than local ones. Our model, unfortunately, does
not allow us to analytically determine whether global
approaches have better energy consumption than local
ones or even whether one global approach has better energy
consumption than another. Therefore, we rely on empirical
data to compare them.

It might seem that, if the distribution were stationary, the
best algorithm would be to keep PDC constant. However,
although this is true for many distributions, there are some
distributions for which this does not hold. For example,
suppose a certain type of task usually takes a short amount
of time, but, on rare occasions, takes much longer: Its work
distribution has a 0.96 quantile of 10 Mc, a 0.97 quantile of
24 Mc, and a 0.98 quantile of 25 Mc. If we want to make
97 percent of deadlines, we could use a constant PDC of
24 Mc. However, a better approach in this case is to use
10 Mc half the time and 25 Mc the other half; this makes the
same number of deadlines, but allows the CPU to run much
more slowly half the time.

Because we do not know how to determine an optimal
PDC for each task, we must use heuristics. Generally, for
those heuristics, we use various previously published
algorithms. We determine, for each task, what schedule
such an algorithm would use for it, compute what the PDC
of this schedule is, and use that PDC for that task.

A problem with using a previously published algorithm
to choose PDC values in this way is that it does not give
predictable performance, i.e., there is no way to choose
parameters to make a given fraction of deadlines. To solve
this, we have developed the following new algorithm for
computing PDC: Suppose the target fraction of deadlines
we want to make is TFDM. We then always set PDC to be
the TFDMth quantile of the task work distribution. This
way, we expect to make each deadline with probability

TFDM. Normally, we will actually want to achieve some
target fraction of possible deadlines made TFPDM, so we
instead set PDC to be the ½TFPDM � F ðsmaxDÞ�th quantile of
the distribution. Note that this algorithm bases its choice on
the current task distribution and is thus a local algorithm.

6 RESULTS

In this section, we present results of experiments we
performed. First, we examine how effective PACE is at
reducing the energy consumption of existing algorithms.
Second, we evaluate various techniques for computing
predeadline cycles.

For our simulations, we use the following six workloads:
Word is a certain traced user’s word processor usage,
Groupwise is another user’s traced groupware usage, and
Excel is another user’s traced spreadsheet usage. Low-Level
is all keyboard activity by another user as seen by hardware
observing only keypress events and commands to idle the
processor. MPEG-One is playback of one video clip and
MPEG-Many is playback of seven consecutive clips. For
more details about these workloads, see our previous work
using them [8], [9] or the supplemental materials associated
with this paper.

In our simulations, we assume the minimum speed is
100 MHz and the maximum speed is 500 MHz. This
maximum CPU speed is comparable to the (various
different) speeds of the systems traced, although signifi-
cantly lower than systems typical when we completed this
research. We assume that power consumption is propor-
tional to the cube of the speed, with peak power consump-
tion of 3 W at 500 MHz. We assume the CPU speed can be
instructed to change to a specific speed at a specific time,
but cannot be instructed to change according to a contin-
uous function of time.

For our distribution estimations, we use methods found
to work well in our previous study [8]. The “Aged-0.95”
sampling method uses a sample consisting of all past
similar tasks, with the kth most recent having weight
ð0:95Þk. The kernel density estimation method is a nonpara-
metric method for distribution estimation [15]. The gamma
distribution estimation method is a parametric method
assuming the distribution is gamma. In previous work [8],
we found it to save almost as much energy as kernel density
estimation while requiring substantially less computation.

6.1 Improving Existing Algorithms with PACE

In Section 4, we described how PACE can replace the
predeadline part of an existing scheduling algorithm with a
schedule that has lower expected energy consumption. In
this section, we simulate this as follows: First, we simulate
an existing algorithm. Then, we modify that algorithm so
that it uses PACE to recompute the predeadline part of its
schedule. Since the two algorithms are performance
equivalent, we compare them solely on the basis of
predeadline energy consumption; all other metrics are
always identical.

For these simulations, we use four standard interval-
based algorithms, each with an interval length of 10 ms.
Each consists of a prediction and speed-setting method, as

864 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

described in Section 2; we name each algorithm after those

methods. The four methods we use are:

. Past/Weiser-style. This is a realizable version of the
algorithm Weiser et al. proposed [17]. By “realiz-
able” we mean it requires no oracle providing
knowledge of the future.

. LongShort/Chan-style. This is a realizable version of
one of the best algorithms Chan et al. proposed [4].

. Flat/Chan-style. This is a realizable version of
another of the best algorithms Chan et al. proposed
[4]. It runs the CPU at a constant speed, so it is
similar to Transmeta’s LongRun2 in steady state. We
choose the speed so that the FPDM is at least
98 percent (99 percent for the Low-Level workload).

. Past/Peg. This is the algorithm Grunwald et al.
favored [5].

Fig. 3 shows the effect of using PACE to modify these

existing algorithms. We evaluate the effect of two versions

of PACE, both using the Aged-0.95 sampling method: one

uses the gamma model, which is easier to implement, and

one uses the kernel density estimation method, which

produces better results. Both versions of PACE reduce the

CPU energy consumption of every workload and every

existing algorithm. PACE using a gamma model reduces

the CPU energy consumption of existing algorithms by

2.4-49.0 percent with an average reduction of 20.3 percent.

PACE using the kernel density estimation method reduces

the CPU energy consumption of existing algorithms by

1.4-49.5 percent with an average reduction of 20.6 percent.

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 865

Fig. 3. These graphs show the effect of modifying existing algorithms with PACE to get performance equivalent, but lower-energy, algorithms. Since

PACE only modifies the predeadline part of the algorithm, it keeps the postdeadline energy the same; this energy is shown with horizontal lines.

The 1.4 percent value is lower than the 2.4 percent value
because Excel, the workload that gains the least benefit from
PACE, happens to also be the only workload for which the
gamma model sometimes outperforms the kernel density
estimation method. Excel gains less benefit from PACE than
other workloads because it consumes a lot of postdeadline
energy and PACE has no effect on postdeadline schedules.
Interestingly, the existing algorithm most improved with
PACE is Past/Peg, the one favored by the most recent
comparison of existing algorithms [5]. Past/Peg was
favored in that work because it misses fewer deadlines
than other algorithms; unfortunately, this requires higher
energy consumption, as Fig. 3 shows.

Another way to examine the results is to consider them
relative to how much energy would be consumed in the
absence of DVS. Without PACE, existing algorithms use
DVS to reduce CPU energy consumption by 10.7-94.1 per-
cent with an average of 54.3 percent. With PACE using a
gamma model, the CPU energy savings increase to
35.9-95.5 percent with an average of 65.2 percent. With
PACE using the kernel density method, the CPU energy
savings increase to 35.6-95.5 percent with an average of
65.4 percent. Thus, on average, if a CPU consumes 100 J
without DVS, existing DVS algorithms allow it to only
consume 46 J; PACE reduces that figure even further to 35 J.
Given these figures, if the CPU accounted for 33 percent of
total energy consumption in a portable computer without
DVS [7], existing DVS algorithms would increase its battery
lifetime by about 22 percent; with PACE, the battery lifetime
improvement would be about 28 percent.

Our processor model assumes that CPU speed and
voltage transitions incur no time or energy overhead. The
assumption of no time overhead is reasonable as future
processors should be able to run during a voltage transition
[3]. However, voltage transitions do consume energy. For
example, if the maximum voltage is 3.3 V and the voltage
regulator uses a 100 �F capacitor, then the transition energy
is 10 �F times the difference in the square of the voltage
during a task, according to Burd and Brodersen [3]. (With a

larger capacitor, the transition energy would be proportion-

ally greater.) Fig. 4 shows, for various algorithms, how

much using PACE increases or decreases the energy

consumed during speed transitions, assuming the above

equation holds. If the algorithm uses more energy to change

speeds than it does when modified by PACE, this number is

positive; otherwise, it is negative. We see that PACE

decreases the overall transition energy for most of the

workloads and algorithms; the ones for which it increases

transition energy are Flat, which never incurs any transition

energy since it never changes speed, and LongShort/Chan,

which uses more transition energy when modified by PACE

for the MPEG-Many and MPEG-One workloads. It is not

surprising that PACE often uses less transition energy for

the following reason: PACE uses a low initial speed for long

enough to ensure most tasks do not ever need a high speed;

this has the additional effect that large voltage transitions

are often not necessary. Note, however, that, in all cases, the

transition energy change introduced by PACE, whether

positive or negative, is always substantially smaller than the

average CPU energy per task and, thus, is unlikely to be

significant.
Fig. 3 also shows the results that could be obtained by the

lookahead optimal strategy, a strategy that can see into the

future and know exactly what the next task’s work

requirement is. These results are not attainable in practice

on these workloads, but they provide a lower bound on the

results that can be attained. We see that the PACE-modified

algorithms consume significantly more energy than the

lookahead optimal results, illustrating that knowledge of

the distribution of task work is much less useful than

knowledge of actual task work. In certain real-time

environments, a system might have knowledge of actual

task work and using that data would substantially reduce

energy consumption.
In conclusion, PACE is not just theoretically useful, but is

a practical means to achieve substantial energy savings

without affecting performance. It works on a variety of

workloads and can improve a variety of existing algo-

rithms. The high energy saving is all the more significant

because PACE by definition has absolutely no effect on

performance.

866 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 4. This graph shows, for various workloads, the average predead-
line transition energy saved per task by modifying various algorithms
with PACE. For these figures, we assume the maximum voltage is 3.3 V
and the voltage transition energy is 10 �F times the difference in the
square of the voltage.

Fig. 5. This graph shows the FPDM achieved when various target levels

of FPDMT are sought using the Aged-0.95/Kernel method.

6.2 Computing Predeadline Cycles

6.2.1 Targeting FPDM

An approach we suggested for setting PDC was to set it to a
certain quantile of the task work distribution, to achieve a
certain target fraction of possible deadlines made TFPDM.
Fig. 5 shows the result of using the Aged-0.95 sampling
method and kernel distribution estimation method to
estimate this quantile and use it as PDC. We see that
increasing the target TFPDM increases FPDM achieved for
all workloads. However, there is often substantial error
between the target FPDM and the actual FPDM. There are a
few reasons for this. First, the model does not work very
well at describing the tail of the distribution, so computed
quantiles are inaccurate. Second, for some workloads, some
values of FPDM are simply too low to be achievable. For
example, 94.3 percent of tasks in Excel are shorter than
sminD, so FPDM cannot be less than 0.943. The other

example is Low-Level, for which 93.4 percent of tasks are

shorter than sminD.
We conclude that we cannot use this method to achieve a

certain target of fraction of possible deadlines made. At

best, it can be used to roughly tune this fraction to some

desired value.

6.2.2 Which PDC Computation Method Uses the Least

Energy?

In Section 5.2, we discussed why we need to use empirical

rather than analytical methods to compare the performance

of different algorithms for computingPDC. In this section, we

perform such empirical tests. Fig. 6 plots the average task

energy consumption as a function of fraction of possible

deadlines made for each of the workloads. Fig. 7 shows these

plots averaged over all workloads. Note that energy generally

goes up with increased fraction of deadlines made, but not

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 867

Fig. 6. These graphs compare existing algorithms when the predeadline part is adjusted by PACE (Aged-0.95/Kernel) and the postdeadline part is

made to always use the maximum CPU speed. We generate each line’s points by simulating an existing algorithm for various parameter values.

Monotonic changes in parameter values do not have monotonic effects on FPDM, so the lines do not depict functions.

always; it is possible to decrease energy consumption while
making more deadlines by making the deadlines for a
different set of tasks, e.g., a shorter set of tasks. The
LongShort/Chan-style, Past/Past, and Past/Peg lines show
the effect of varying interval length; the Flat/Chan-style line
shows the effect of varying the constant predicted utiliza-
tion (and, thus, the constant PDC); the TFPDM line shows
the effect of varying TFPDM. We see that Flat/Chan-style,
the only global strategy we considered, most commonly
gives the lowest energy consumption for a given fraction of
possible deadlines made. This suggests that global strate-
gies tend to do better than local ones. Among the local
algorithms, LongShort/Chan-style does best, achieving
reasonable energy savings for a given fraction of possible
deadlines made.

7 CONCLUSIONS

The main focus of this paper has been PACE, an approach
to reducing the energy consumption of dynamic voltage
scaling algorithms without affecting their performance. We
showed that, when tasks have hard or soft deadlines, it is
possible to change how an algorithm schedules these tasks
in a way that has no effect on performance, but can reduce
energy consumption. Furthermore, we developed an
optimal formula for scheduling tasks with minimal energy
consumption.

Simulations using real workloads showed that PACE can
substantially reduce CPU energy consumption without
affecting performance. Without PACE, existing algorithms
use DVS to reduce CPU energy consumption by 11-94 percent
with an average of 54.3 percent. With the best version of
PACE, the savings increase to 36-96 percent with an average
of 65.4 percent. The overall effect is that PACE reduces the
CPU energy consumption of existing algorithms by 1.4-49.5
percent with an average of 20.6 percent.

Besides PACE, we made other suggestions for changing
scaling algorithms. We recommend that algorithms use a
constant speed for all tasks once they have passed their
deadlines; we believe the best speed for this purpose is the
maximum CPU speed, largely because of the power
consumption of other components. Furthermore, among

the existing algorithms we considered, the best one to use
along with PACE appears to be Flat/Chan-style. This
algorithm always plans to complete the same number of
cycles by each deadline.

We therefore recommend the following recipe for a DVS
algorithm: For each task type, pick a reasonable deadline (e.g.,
50 ms for interactive tasks), a reasonable number of cycles to
complete by the deadline (e.g., 40-60 percent of the maximum
possible), and a reasonable speed to always use after the
deadline (e.g., the maximum CPU speed). When a task
completes, compute how many cycles it used, add this value
to the sample of similar tasks’ work requirements, then
estimate the distribution of the next similar task using the new
sample. For the sample, either only use recent values or
weight values as they age. Estimate the distribution using the
kernel density estimation method or the gamma model if the
kernel density estimation method is impractical. When a task
arrives, run it using a PACE schedule reflecting the
probability distribution for its task type.

8 SUPPLEMENTAL MATERIAL

Due to space constraints, we present certain related material
as supplemental material which can be found on the
Computer Society Digital Library at http://computer.org/
tc/archives.htm. This material includes proofs for this
paper’s mathematical claims, an approach to computing
PDC efficiently, workload descriptions, and avenues for
future work. Much of this supplemental material also
appears in a technical report [9].

ACKNOWLEDGMENTS

The authors thank Michael Jordan for his very helpful
suggestions regarding statistical methods, namely, the use
of the gamma distribution and kernel density estimation.
They also offer great thanks to the anonymous users of
VTrace whose traces enabled them to create the workloads
for this paper. This material is based upon work supported
by the State of California MICRO program, AT&T Labora-
tories, Cisco Systems, Fujitsu Microelectronics, IBM Cor-
poration, Intel Corporation, Maxtor Corporation, Microsoft
Corporation, Sun Microsystems, Toshiba Corporation, and
Veritas Software.

REFERENCES

[1] M. Aron and P. Druschel, “Soft Timers: Efficient Microsecond
Software Timer Support for Network Processing,” Proc. 17th ACM
Symp. Operating Systems Principles (SOSP), pp. 232-246, Dec. 1999.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-
Time Systems,” Proc. 2001 Real-Time Systems Symp. (RTSS), pp. 95-
105, Dec. 2001.

[3] T. Burd and R.W. Brodersen, “Design Issues for Dynamic Voltage
Scaling,” Proc. 2000 Int’l Symp. Low Power Electronics and Design,
pp. 9-14, July 2000.

[4] E. Chan, K. Govil, and H. Wasserman, “Comparing Algorithms
for Dynamic Speed-Setting of a Low-Power CPU,” Proc. First ACM
Int’l Conf. Mobile Computing and Networking (Mobicom ’95), pp. 13-
25, Nov. 1995.

[5] D. Grunwald, P. Levis, K.I. Farkas, C.B. Morrey III, and M.
Neufeld, “Policies for Dynamic Clock Scheduling,” Proc. Fourth
Symp. Operating Systems Design and Implementation, Oct. 2000.

868 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 7. This graph shows the results in Fig. 6 averaged over all
workloads. It shows how existing algorithms compare to each other
when their predeadline parts are adjusted by PACE and their postdead-
line parts are changed to always use the maximum CPU speed. It
graphs average total energy per task as a function of fraction of possible
deadlines made.

[6] A. Klaiber, “The Technology behind Crusoe2 Processors,” white
paper, Transmeta Corp., Jan. 2000.

[7] J.R. Lorch and A.J. Smith, “Energy Consumption of Apple
Macintosh Computers,” IEEE Micro, vol. 18, no. 6, pp. 54-63,
Nov./Dec. 1998.

[8] J.R. Lorch and A.J. Smith, “Improving Dynamic Voltage Scaling
Algorithms with PACE,” Proc. 2001 ACM SIGMETRICS Conf.,
pp. 50-61, June 2001.

[9] J.R. Lorch and A.J. Smith, “PACE: A New Approach to Dynamic
Voltage Scaling,” Technical Report UCB/CSD-01-1136, Computer
Science Division, Electrical Engineering and Computer Science
Dept., Univ. of California at Berkeley, Mar. 2001.

[10] J.R. Lorch and A.J. Smith, “Operating System Modifications for
Task-Based Speed and Voltage Scheduling,” Proc. First Int’l Conf.
Mobile Systems, Applications, and Services (Mobisys 2003), May 2003.

[11] T. Pering, T. Burd, and R.W. Brodersen, “The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms,” Proc. 1998
Int’l Symp. Low Power Electronics and Design, pp. 76-81, Aug. 1998.

[12] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP), pp. 89-102, Oct. 2001.

[13] V. Raghunathan, P. Spanos, and M.B. Srivastava, “Adaptive
Power-Fidelity in Energy-Aware Wireless Embedded Systems,”
Proc. 2001 Real-Time Systems Symp. (RTSS), pp. 106-115, Dec. 2001.

[14] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Reading, Mass.: Addison-Wesley,
1998.

[15] B.W. Silverman, Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall, 1986.

[16] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G.D. Micheli,
“Dynamic Voltage Scaling and Power Management for Portable
Systems,” Proc. 38th Design Automation Conf., pp. 524-529, June
2001.

[17] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. First Symp. Operating Systems Design
and Implementation, pp. 13-23, Nov. 1994.

[18] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Reading, Mass.: Addison-Wesley, 1993.

Jacob R. Lorch received BS degrees in
computer science and mathematics from Michi-
gan State University, then the MS and PhD
degrees in computer science from the University
of California, Berkeley. He is currently a re-
searcher in the Systems and Networking Group
at Microsoft Research in Redmond, Washington.
His research interests include distributed sys-
tems, fault tolerance, file systems, operating
systems, and energy management. He is a

member of the ACM and the IEEE.

Alan Jay Smith received the BS degree in
electrical engineering from the Massachusetts
Institute of Technology, Cambridge, and the MS
and PhD degrees in computer science from
Stanford University, California. He was a US
National Science Foundation Graduate Fellow.
He is currently a professor in the Computer
Science Division of the Department of Electrical
Engineering and Computer Sciences, University
of California, Berkeley, where he has been a

member of the faculty since 1974; he was vice-chairman of the Electrical
Engineering and Computer Science department from July 1982 to June
1984. His research interests include the analysis and modeling of
computer systems and devices, computer architecture, and operating
systems. He has published a large number of research papers, including
one which won the IEEE Best Paper Award for the best paper in the
IEEE Transactions on Computers in 1979. He also consults widely with
computer and electronics companies. He is a fellow of the IEEE, a fellow
of the ACM, a fellow of the American Association for the Advancement
of Science, a member of IFIP Working Group 7.3, the Computer
Measurement Group, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. In
2003, he received the A.A. Michelson Award from the Computer
Measurement Group (CMG). The award is given as a lifetime
achievement award for making significant, lasting contributions to the
field of computer measurement and performance. He was on the Board
of Directors (1993-2003), and was chairman (1991-1993) of the ACM
Special Interest Group on Computer Architecture (SIGARCH), was
chairman (1983-1987) of the ACM Special Interest Group on Operating
Systems (SIGOPS), was on the Board of Directors (1985-1989) of the
ACM Special Interest Group on Measurement and Evaluation (SIG-
METRICS), was an ACM National Lecturer (1985-1986) and an IEEE
Distinguished Visitor (1986-1987), was an associate editor of the ACM
Transactions on Computer Systems (TOCS) (1982-1993), is a subject
area editor of the Journal of Parallel and Distributed Computing, and is
on the editorial board of the Journal of Microprocessors and
Microsystems. He was program chairman for the Sigmetrics ’89/
Performance ’89 Conference, program cochair for the Second (1990)
Sixth (1994), and Ninth (1997) Hot Chips Conferences, and has served
on numerous program committees.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

LORCH AND SMITH: PACE: A NEW APPROACH TO DYNAMIC VOLTAGE SCALING 869

