
Scheduling Techniques for Reducing Processor Energy Use in MacOS

Jacob R. Lorch and Alan Jay Smith
Computer Science Division, EECS Department, UC Berkeley

Berkeley, CA 94720-1776

Abstract

The CPU is one of the major power consumers in a
portable computer, and considerable power can be saved by
turning off the CPU when it is not doing useful work. In Ap-
ple’s MacOS, however, idle time is often converted to busy
waiting, and generally it is very hard to tell when no use-
ful computation is occurring. In this paper, we suggest sev-
eral heuristic techniques for identifying this condition, and
for temporarily putting the CPU in a low-power state. These
techniques include turning off the processor when all pro-
cesses are blocked, turning off the processor when processes
appear to be busy waiting, and extending real time process
sleep periods. We use trace-driven simulation, using proces-
sor run interval traces, to evaluate the potential energy sav-
ings and performance impact. We find that these techniques
save considerable amounts of processor energy (as much as
66%), while having very little performance impact (less than
2% increase in run time). Implementing the proposed strate-
gies should increase battery lifetime by approximately 20%
relative to Apple’s current CPU power management strategy,
since the CPU and associated logic are responsible for about
32% of power use; similar techniques should be applicable
to operating systems with similar behavior.

1 Introduction

Power consumption is becoming an increasingly impor-
tant feature of personal computers. High power consumption
in desktop computers is undesirable as it leads to fan noise,
heat, and expense. High power consumption in portable
computers is even more undesirable as users of such ma-
chines want them to last as long as possible on a single bat-
tery charge. For these reasons, much work has been done in
reducing the power consumption of computers.

In [9] and [10], we analyzed the power consumption of
various Macintosh PowerBook computers, in typical use by

This material is based upon work supported by a National Science
Foundation Graduate Research Fellowship, by Apple Computer, and also
in part by the National Science Foundation under grants MIP-9116578 and
CCR-9117028, the State of California under the MICRO program, Intel Cor-
poration, Sun Microsystems, Fujitsu Microelectronics, Toshiba Corpora-
tion, and Sony Research Laboratories. Although the work presented here
has benefited from support from and cooperation by Apple, the relation-
ship between this work and Apple’s product development plans has yet to
be determined.

a number of engineering users. We found that, depending on
the machine and user, up to 18–34% of total power was at-
tributable to components whose power consumption could be
reduced by power management of the processor, i.e. the CPU
and logic that could be turned off when the CPU was inactive.
This high percentage, combined with our intuition that soft-
ware power management could be significantly improved for
the processor, led us to conclude that the most important tar-
get for further research in software power management was
the processor.

Many modern microprocessors have low-power states, in
which they consume little or no power. To take advantage of
such low-power states, the operating system needs to direct
the processor to turn off (or down) when it is predicted that
the consequent savings in power will be worth the time and
energy overhead of turning off and restarting. In this way,
the goal of processor power management strategies is simi-
lar to that of hard disks [3, 7]. Some strategies for making
these predictions are described by Srivastava et al. [15] Un-
like disks, however, the delay and energy cost for a modern
microprocessor to enter and return from a low-power mode
are typically low. For instance, the AT&T Hobbit and certain
versions of the MC68030 and MC68040 use static logic so
that most of their state can be retained when the clock is shut
down [15]. Also, the PowerPC 603 can exit the low-power
Doze mode in about ten system clocks [4].

Because of the short delay and low energy cost for enter-
ing and leaving a low-power state, the optimal CPU power
management strategy is trivial: turn off the CPU whenever
there is no useful work to do. An opportunity for such a strat-
egy is described by Srivastava et al. [15], who point out that
the process scheduling of modern window-based operating
systems is event-driven, i.e. that the responsibility of pro-
cesses in such systems is to process events such as mouse
clicks when they occur and then to block until another such
event is ready. In this type of environment, the most appro-
priate strategy is to shut off the processor when all processes
are blocked, and to turn the processor back on when an ex-
ternal event occurs. An essentially equivalent version of this
strategy, namely to establish a virtual lowest-priority process
whose job is to turn off the processor when it runs, is recom-
mended by Suessmith and Paap [16] for the PowerPC 603,
and by Suzuki and Uno [17] in a 1993 patent. Such a virtual
lowest-priority process has in the past been called the “idle

loop,” and in mainframes typically lighted a bulb on the con-
sole.

1.1 Why it isn’t trivial

We refer to the strategy of turning off the processor when
no process is available to run the basic strategy. Unfortu-
nately, in Apple’s MacOS, processes can run or be scheduled
to run even when they have no useful work to do. This fea-
ture is partially by design, since in a single-user system there
is less need for the operating system to act as an arbiter of re-
source use [12]. Partially, it is because the OS was not writ-
ten with power management in mind. Partially, it is because
the MacOS, like other personal computer operating systems
(e.g. those from Microsoft), is based on code originally de-
veloped for 8- and 16-bit non-portable machines, for which
development time and code compactness were far more im-
portant goals than clean design or faithfulness to OS design
principles as described in textbooks.

There are two main problems with the current manage-
ment of processor time, one having to do with the system
and one having to do with applications. The first problem is
that the operating system will sometimes schedule a process
even though it has no work to do. We were first made aware
of this phenomenon when we studied traces of MacOS pro-
cess scheduling calls, and found that often a process would
be scheduled to run before the conditions the process had
established as necessary for it to be ready were fulfilled. It
seems that often, when there are no ready processes, the OS
picks one to run anyway, usually the process associated with
the active window. The second problem is that programmers
writing applications generally assume that when their appli-
cation is running in the foreground, it is justified in taking as
much processing time as it wants. First, a process will often
request processor time even when it has nothing to do. We
discovered this problem in MacOS when we discovered pe-
riods of as long as ten minutes during which a process never
did anything, yet never blocked; we describe later what we
mean by “never did anything.” Second, when a process de-
cides to block, it often requests a shorter sleep period than
necessary. Solutions to both these problems seem to be nec-
essary to obtain the most savings from the basic strategy.

For this reason, we have developed additional techniques
for process management. Our technique for dealing with the
first problem is to simply make the operating system never
schedule a process when it has requested to be blocked; we
call this the simple scheduling technique. Dealing with the
second problem is more difficult, since the determination of
when a process is actually doing something useful is difficult.
One technique we suggest is to use a heuristic to decide when
a process is making unnecessary requests for processor time
and to forcibly block any such process. Another technique
we suggest is that all sleep times requested by processes be
multiplied by a constant factor, chosen by the user or operat-
ing system, to ensure that a reasonable trade-off between en-

ergy savings and performance is obtained. We call these lat-
ter two techniques the greediness technique and sleep exten-
sion technique, respectively. We will show how using these
techniques can improve the effectiveness of the basic strat-
egy, allowing it to far surpass the effectiveness of the current
MacOS inactivity-timer based strategy. Each of these is de-
scribed in more detail below.

In this paper, we evaluate these different strategies, over
a variety of parameter values, using trace-driven simulation.
These simulations enable us to compare these algorithms to
the current MacOS strategy, and to optimize their parame-
ters. A comparison between two strategies is based on two
consequences of each strategy: how much processor power
it saves and how much it decreases observed performance.

The paper is structured as follows. In Section 2, we de-
scribe in detail the strategies we will be comparing, including
the current strategy used by MacOS, the basic strategy, and
our suggested process management techniques for improving
the basic strategy. In Section 3, we describe the methodology
we used to evaluate these strategies: the evaluation criteria,
the tools we used for the trace-driven simulation, and the na-
ture of the traces we collected. In Section 4, we present the
results of our simulations. In Section 5, we discuss the mean-
ing and consequences of these results, and point the way to
future work.

2 Strategies

2.1 Current strategy

The currently used processor power management strategy
in MacOS is based on an inactivity timer. The operating sys-
tem will initiate processor power reduction whenever no ac-
tivity has occurred in the last two seconds and no I/O activity
has occurred in the last 15 seconds. Power reduction is halted
whenever activity is once again detected. Activity is defined
here and in later contexts as any user input, any I/O device
read or write, any change in the appearance of the cursor, or
any time spent with the cursor as a watch. The reason for the
classification of these latter two as activity is that MacOS hu-
man interface guidelines specify that a process that is actively
computing must indicate this to the user by having the cursor
appear as a watch or by frequently changing the appearance
of the cursor, e.g. by making a “color wheel” spin.

2.2 The basic strategy

The basic strategy is to turn off the processor whenever all
processes are blocked. Unfortunately, under MacOS, this is
not often the case, since MacOS frequently schedules some
process whether or not the event for which the process was
waiting has actually occurred.

One might wonder why MacOS uses this inactivity timer
based strategy instead of the basic strategy. One reason is that

all but the most recent Macintosh computers have high over-
head associated with turning off and on the processor [8],
making the basic strategy less applicable. In older proces-
sors, for example, the contents of on-chip caches were lost
when the processor was powered down. Another reason is
that, as we have described before and will see later, the effec-
tiveness of the basic strategy is not very different from that of
the inactivity timer based strategy, given the current MacOS
method of process time management.

2.3 The simple scheduling technique

The simple scheduling technique is to not schedule a pro-
cess until the condition under which it has indicated it will
be ready to run has been met. In MacOS, this condition is
always explicitly indicated by the process, and is always of
the form, “any of the event types has occurred, or
a period of time has passed since the process last yielded
control of the processor.” The period of time for which the
process is willing to wait in the absence of events before be-
ing scheduled is referred to as the sleep period.

Note that, in some other operating systems, such as UNIX
or Microsoft Windows, the simple scheduling technique is
not needed, since it is the default behavior of the operating
system.

2.4 The sleep extension technique

Using only the simple scheduling technique described
above means that a process is given control of the proces-
sor whenever it wants it (unless the CPU is otherwise busy).
For example, if it asks to be unblocked every 1 second, it is
unblocked every 1 second, even if all it wants to do is blink
the cursor, a common occurrence. Since MacOS is not a real
time system, a real time sleep period does not actually have
to be honored. In fact, in the current MacOS power manage-
ment strategy, with power management enabled, the cursor
may blink much more slowly than it would without power
management. If this kind of behavior is acceptable, it is pos-
sible to increase the effectiveness of the simple scheduling
technique by using what we call the sleep extension tech-
nique. This technique specifies a sleep multiplier, a number
greater than one by which all sleep periods are multiplied,
thus eliminating some fraction of the process run intervals.
We envision that the sleep multiplier can be set, either by
the user or by the operating system, so as to maximize en-
ergy savings, given a certain level of performance desired.
We note that sleep extension may negatively impact perfor-
mance, or even functionality, since not all delays will be as
inconsequential as a cursor which blinks less frequently.

2.5 The greediness technique

The greediness technique is, in overview, to identify and
block processes that are not doing useful work. First, we will

describe the technique in general terms, and then we will in-
dicate the details of its implementation for the MacOS.

The technique is based on the following model of the ap-
propriate way a process should operate in an event-driven en-
vironment. A process, upon receiving an event, should pro-
cess that event, blocking when and only when it has finished
that processing. Once blocked, it should be scheduled again
when and only when another event is ready to be processed;
an exception is that the process may want to be scheduled pe-
riodically to perform periodic tasks, such as blinking the cur-
sor or checking whether it is time to do backups. We say that
a process is acting greedily when it fails to block even after
it has finished processing an event. This can occur when a
process busy waits in some manner, e.g. it loops on “check
for event.” When we determine a process is acting greedily,
we will forcibly block that process for a set period of time.

MacOS uses cooperative multitasking, meaning that once
a process gets control of the processor, it retains that control
until it chooses to yield control. For this reason, application
writers are strongly encouraged to have their processes yield
control periodically, even when they still have work to do.
Processes indicate that they still have work to do by specify-
ing a sleep period of zero, thereby failing to block. We call
the period of time between when a process gains control of
the processor and when it yields control a quantum.

Part of our technique is a heuristic to determine when a
process is acting greedily. We say that a process is acting
greedily when it specifies a sleep period of zero even though
it seems not to be actively computing. We consider a pro-
cess to start actively computing when it receives an event or
shows some signs of “activity,” as defined below. We esti-
mate that a process is no longer actively computing if it ex-
plicitly blocks, or if it yields control several times in a row
without receiving an event or showing signs of activity. The
exact number of control-yield times, which we call the greed-
iness threshold, is a parameter of the technique; we expect it
to be set so as to maximize energy savings, given a desired
level of performance. We say that a process shows no sign of
activity if it performs no I/O device read or write, does not
have the sound chip on, does not change the appearance of
the cursor, and does not have the cursor appear as a watch.
The absence of activity as we have so defined it implies that
either the CPU is idle, the process running is busy waiting in
some manner, or the process running is violating the MacOS
human interface guidelines that we mentioned earlier.

The greediness technique works as follows. When the OS
determines that a process is acting greedily as defined above,
it blocks it for a fixed period called the forced sleep period.
The forced sleep period is a parameter to be optimized, with
the following tradeoff: a short sleep period saves insufficient
power, while a long sleep period may, in the case that our
heuristic fails, block a process that is actually doing some-
thing useful.

3 Methodology

3.1 Evaluation of strategies

Evaluation of a strategy requires measuring two conse-
quences of that strategy: processor energy savings and per-
formance impact. Processor energy savings is easy to de-
duce from a simulation, since it is essentially the percent de-
crease in the time the processor spends in the high-power
state. In contrast, performance impact, by which we mean
the percent increase in workload runtime as a result of using
a power-saving strategy, is difficult to measure. This perfor-
mance penalty stems from the fact that a power saving strat-
egy will sometimes cause the processor not to run when it
would otherwise be performing useful work. Such work will
wind up having to be scheduled later, making the workload
take longer to complete. Without detailed knowledge of the
purpose of instruction sequences, it is difficult for a tracer to
accurately determine what work is useful and what is not, so
our measure will necessarily be inexact.

We have decided to use the same heuristic used in the
greediness technique to determine when the processor is do-
ing useful work. In other words, we will call a quantum use-
ful if, during that quantum, there is any I/O device read or
write, the sound chip is on, there is any change to the cursor,
or the cursor appears as a watch. It might be objected that
using the same heuristic in the evaluation of a strategy as is
used by that strategy is invalid. However, remember that a
strategy does not have prior knowledge of when a quantum
will be useful, whereas the evaluation system does. Thus, we
are evaluating the accuracy of our guess that a quantum will
be useful or useless.

We must also account for the time not spent inside ap-
plication code in the original trace. We divide this time into
time spent switching processes in and out, time spent context
switching, time the OS spent doing useful work, and OS idle
time. The OS is considered to be doing useful work when-
ever it shows signs of activity that would cause a process
quantum to be labeled useful. Such useful work is scheduled
in the simulations immediately after the quantum that it origi-
nally followed is scheduled, on the assumption that most sig-
nificant OS work is necessitated by the actions of the process
that just ran. Idle time is identified whenever no process is
running and the operating system is not doing useful work
for a continuous period over 16 ms. We chose this thresh-
old for two reasons. First, it is the smallest time unit used for
process scheduling by MacOS, so we expect any decision to
idle to result in at least this much idleness. Second, 16 ms
is much greater than the modal (most common) value of in-
terprocess time, indicating that it is far longer than should
ever be needed to merely switch between processes. Finally,
context switch time is assumed to occur any time a process
switches in but did not just switch out; context switches are
considered to take 0.681 ms, the observed difference between
the average interprocess time when no context switch occurs
and the average interprocess time when one does occur.

3.2 Tools

There are three main tools we used to perform our sim-
ulations. The first tool, IdleTracer, collects traces of events
needed to simulate the different strategies, and is discussed
in more detail in [8]. Specifically, it records the time of oc-
currence and other details about the following events: trac-
ing begins or ends, the machine goes to or wakes from sleep,
a process begins or ends, the sound chip is turned on or off,
the cursor changes, the mouse starts or stops moving, an I/O
device is read or written, a process obtains or yields control
of the processor, or an event is placed on the event queue.
IdleTracer only collects data while the machine it is tracing
is running on battery power, since that is when processor en-
ergy savings is most important, and we want our analysis to
reflect the appropriate workload. Also, IdleTracer shuts off
processor power management while it is tracing, so that the
traces it uses are not confounded by the current strategy and
thus can be used to simulate any strategy. IdleTracer makes
use of the SETC [14] module, a set of routines for tracing and
counting system events.

The second tool, ItmSim, simulates power management
methods using the current MacOS inactivity-threshold strat-
egy, and provides a basis for comparison. In other words, it
simulates the strategy that turns off the processor when there
has been no activity (as defined earlier) in the last two sec-
onds and no I/O activity in the last fifteen seconds. In ac-
tuality, during periods that the processor is supposed to be
off, MacOS will occasionally turn the processor on for long
enough to schedule a process quantum. This is done to give
processes a chance to demonstrate some activity and put an
end to processor power management, in case the processor
was shut off too soon. The details of how process quanta
are scheduled while the processor is supposed to be off is
proprietary and thus is not described here; however, ItmSim
does attempt to simulate this aspect of the strategy. To give
an idea of the consequences of this proprietary modification,
our simulations showed that for the aggregate workload we
studied, it decreased the performance impact measure from
1.93% to 1.84%, at the expense of decreasing processor off
time from 29.77% to 28.79%. This particular proprietary
modification, therefore, has only a trivial effect on the power
savings.

When, in the simulation, the processor comes back on
due to some activity, any quanta in the original trace that
preceded that activity but have not yet been scheduled are
divided into two categories, useful and non-useful. Useful
quanta are immediately scheduled, delaying the rest of the
trace execution and thus contributing to the performance im-
pact measure. Non-useful quanta are discarded and never
scheduled. Any useful OS time associated with these quanta
is also immediately scheduled, contributing to the perfor-
mance impact measure.

The third tool, AsmSim, simulates the basic strategy with
the simple scheduling technique, along with zero or more
of our two other suggested techniques: sleep extension and

User number 1 2 3 4 5 6
Machine Duo 280c Duo 230 Duo 280c Duo 280c Duo 280c Duo 280c
MacOS version 7.5 7.5.1 7.5 7.5 7.5.1 7.5
RAM size 12 MB 12 MB 12 MB 12 MB 12 MB 12 MB
Hard disk size 320 MB 160 MB 320 MB 320 MB 320 MB 240 MB
Trace length (hr:min:sec) 2:48:34 3:01:21 9:09:00 5:26:41 4:52:55 4:14:52

Table 1: Information about the six users traced.

greediness. The parameters for these techniques may be var-
ied at will in the simulations. When, in the simulation, an
event becomes ready for a process, all quanta of that pro-
cess preceding the receipt of the ready event that have not
yet been scheduled will be treated as described above, i.e. all
useful quanta will be run immediately (before the power-up
event), all useless quanta will be discarded, and any useful
OS time associated with such quanta will also be run immedi-
ately. Even for periodic processes, we schedule quanta in the
order in which they occurred. For example, if after its quan-
tum a process originally slept for 1 second but is actually
awoken after 4 seconds, then at that point we schedule quan-
tum , not some later quantum. Note that this approach
may cause inaccuracies in the simulation, since the process
might in reality check how long it has been since it last went
to sleep, and act differently seeing that 4 seconds have passed
than it did when only 1 second had passed. We expect and
hope that such dependence of process action on time is rare
enough that this does not introduce significant errors into the
results of our simulations.

3.3 Traces

The traces were collected from six users, each an engi-
neer at Apple Computer, Inc. Table 1 indicates data about the
traces obtained from each user and the machines on which
those traces were collected. Much more detailed discussion
of the traces and their collection appears in [8]. Most results
we present will concern the aggregate workload, i.e. the trace
composed of the concatenation of all six of these traces.

4 Results

In this section, we refer to the Current MacOS strategy as
strategy C and the Basic strategy as strategy B. We append
the letter I to indicate use of the sImple schedule technique,
append the letter G to indicate use of the Greediness tech-
nique, and append the letter S for the Sleep extension tech-
nique. Note that we never simulate the greediness technique
or sleep extension technique without the simple scheduling
technique, since they are designed as supplements to the sim-
ple scheduling technique.

4.1 Per-strategy results

The first thing we shall do is determine the optimal en-
ergy savings attainable. An optimum strategy would sched-
ule only time that was spent doing useful work, and would
entirely omit non-useful time; its performance impact would
be zero, since it would have foreknowledge of when useful
work would occur and arrange to have the processor on when
it happens. Simulation indicates that such a strategy would
yield an energy savings of 82.33%; thus, this is an absolute
ceiling on what can be obtained by any realizable strategy.
This is a remarkably high figure—what it says is that the pro-
cessor is doing useful computation during only 17.67% of the
29.56 hours of the trace; the rest of the time is busy waiting
by a user process or idling.

The second simulation results concern strategy C. We
find from simulation that strategy C yields an energy sav-
ings of 28.79% along with a performance impact measure of
1.84%. In other words, it causes the processor to consume
only 71.21% of the energy it would without a power-saving
strategy, but increases overall workload completion time by
1.84%. The strategy increases processor energy consump-
tion by 303% compared with the optimal strategy, since it
only recovers 35% of the real idle time. Note also that since
only 17.67% of the CPU time is actually useful, the perfor-
mance impact of 1.84% means that we have misclassified
10% of the useful CPU time, and have had to run that work
in a delayed manner. Thus, the actual real time delay per-
ceived by the user may not be 1.84%, but may be closer to
10%, since the user waits for a reply only during periods of
real, useful, work.

The next simulation results concern strategy B, which
turns off the process when and only when there was idling
in the original trace. Strategy B has an energy savings of
31.98% and a performance impact of 0%. Thus, we see
that the basic strategy without any new process management
techniques saves slightly more energy than the current tech-
nique, and has no impact on performance. However, it causes
the processor to consume 285% more energy than under the
optimal strategy, since it only recovers 39% of real idle time.

The next simulation results concern strategy BI. Strategy
BI has an energy savings of 47.10% and a performance im-
pact of 1.08%. Thus, we see that strategy BI decreases pro-
cessor energy consumption by 26% and decreases workload
completion time by 0.7% compared to strategy C. Compared
to the optimal strategy, it causes the processor to consume

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

P
er

fo
rm

an
ce

 im
pa

ct
 (

%
)

P r o c e s s o r e n e r g y s a v i n g s (%)

2.25

10

5

1

1 . 5

1.5

performance impact = 1.84%

Figure 1: Performance impact measure versus processor energy savings for strategy BIS with various sleep multipliers. Certain
points are labeled with the sleep multipliers to which they correspond.

199% more energy, since it only recovers 57% of real idle
time.

The next simulation results concern strategy BIS. Fig-
ure 1 shows the performance versus energy savings graph for
variations of this strategy using sleep multipliers between 1
and 10. We see that the point at which this strategy has per-
formance impact of 1.84%, equal to that of strategy C, cor-
responds to a sleep multiplier of 2.25 and a processor energy
savings of 51.72%. Thus, we see that, comparing strategies
BIS and C on equal performance grounds, strategy BIS de-
creases processor energy consumption by 32%. Increasing
the sleep multiplier to 10 saves 55.93% of the CPU energy,
with a performance impact of 2.84%. Note, however, that the
performance impact measure does not tell the whole story in
this case. Generally, a real time delay is used by some pro-
cess that wakes up, checks something, and if certain condi-
tions are met, does something. A very large real time delay
in the wakeup period may mean that certain checks are not
made in a timely manner; we have ignored that issue here.
In practice, sleep extension factors over some level, perhaps
3 to 5, may not be desirable.

The next simulation results concern strategy BIG. Fig-
ure 2 shows the performance versus energy savings graph
for variations of this strategy using greediness thresholds be-
tween 20 and 80 and forced sleep periods between 0.025 sec-
onds and 10 seconds. We find, through extensive exploration
of the parameter space, that the parameter settings giving the
best energy savings at the 1.84% performance impact level
are a greediness threshold of 61 and a forced sleep period of
0.52 seconds. These parameters yield an energy savings of
66.18%. Thus, we see that, comparing strategies BIG and C
on equal performance grounds, strategy BIG reduces proces-
sor energy consumption by 53%. Compared to the optimal
strategy, it increases processor energy consumption by 91%,
since it only saves 80% of real idle time.

The next results we present concern strategy BIGS. Fig-

ure 3 shows that, in the realm we are interested in, a perfor-
mance impact of 1.84%, increasing the sleep multiplier al-
ways produces worse results than changing the greediness
threshold and forced sleep period. The energy savings attain-
able by increasing the sleep multiplier can be attained at a
lower performance cost by instead decreasing the greediness
threshold or by increasing the forced sleep period. Thus, the
best BIGS strategy is the BIG strategy, which does not make
any use of the sleep extension technique. The figure suggests
that if we could tolerate a greater performance impact, such
as 2.7%, this would no longer be the case, and the best en-
ergy savings for BIGS would be attained at a sleep multiplier
above one. We conclude that for some values of performance
impact, it is useful to combine the greediness technique and
sleep extension technique, but for a performance impact of
1.84% it is useless to use the sleep extension technique if the
greediness technique is in use.

A summary of all the findings about the above strategies
can be seen in Table 2, as well as the columns of Figure 5
corresponding to users 1–6.

4.2 Sensitivity to parameter values

An important issue is the extent to which the parameters
we chose are specific to the workload studied, and whether
they would be optimal or equally effective for some other
workload. Furthermore, it is unclear how effective the user
or operating system could be at dynamically tuning these pa-
rameters in the best way to achieve optimal energy savings at
a given level of performance. Thus, it is important to observe
the sensitivity of the results we obtained to the particular val-
ues of the parameters we chose.

The graphs we showed that demonstrate the relationship
between performance, energy savings, and parameter values
also demonstrate the reasonably low sensitivity of the results
to the parameter values. For instance, varying the forced

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

58 60 62 64 66 68 70

Greediness threshold 20
Greediness threshold 40
