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Abstract

Operating Systems Techniques for Reducing Processor Energy Consumption

by

Jacob Rubin Lorch

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alan Jay Smith, Chair

In the last decade, limiting computer energy consumption has become a pervasive

goal in computer design, largely due to growing use of portable and embedded computers with

limited battery capacities. This work concerns ways to reduce processor energy consumption,

since the processor consumes much of a computer’s energy. Our specific contributions are as

follows.

First, we introduce our thesis that operating systems should have a significant role

in processor energy management. The operating system knows what threads and applications

are running, and can predict their future requirements based on their past usage and their

user interaction. We motivate using software to control energy management decisions by

describing how software has traditionally been applied to this regime.

Next, we describe operating system techniques for increasing processor sleep time.

We suggest never running blocked processes, and delaying processes that execute without

producing output or otherwise signaling useful activity. These techniques reduce CPU energy

by 47–66%.

Next, we address ways to dynamically change a processor’s speed and voltage. We

suggest considering what tasks the system is working on and their performance needs, then

using a speed schedule that just meets those needs. We show that the optimal schedule

increases speed as a task progresses according to a formula dependent on the probability
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distribution of task CPU requirement. Such a schedule can reduce CPU energy consumption

by 20.6% on average, with no effect on performance.

Next, we analyze real user workloads to evaluate ways to infer task information

from observations of user interface events. We find that observable differences in such events

have significant effects on CPU usage. Using such information in estimating the probability

distribution of task CPU requirements can reduce energy consumption by a further 0.5–1.5%.

Finally, we implement our methods. We deal with I/O wait time, overlap of multiple

simultaneous tasks, limited speed/voltage settings, limited timer granularity, and limited

ability to modify an operating system. The resulting task-based scheduler implements our

energy-saving methods with 1.2% background overhead. We find that our methods will be

more effective on future processors capable of a wider range of speeds than modern processors.

Professor Alan Jay Smith
Dissertation Committee Chair
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Chapter I

Introduction

I.1 Motivation

In the past, computers were judged mainly on two criteria: price and performance.

Lately, however, energy consumption has gained increasing importance, due to several fac-

tors. Portable computers, including notebooks and palm-sized devices, have gained popular-

ity. These computers are limited in their operating time by the amount of energy in their

batteries. And, unlike most properties of computers, battery capacity per unit weight has

improved little in recent years and shows little indication of substantial improvement in com-

ing years [Fuj97]. Even in nonportable computers, we have reached a point where designers

must worry about the power consumption of computers due to the consequent heat dissipa-

tion, which can damage components and disturb nearby users. In addition, we are currently

experiencing rising energy costs, contributing to a desire to keep energy consumption low.

Hardware designers can do many things to keep the energy consumption of devices

low. One fruitful approach is to provide low-power states on these devices that consume less

power at the cost of somehow reduced functionality. In this way, when the system does not

require the full performance of the device, it can save power. However, the presence of such

low-power states presents an interesting problem for the system designer. The system must

somehow continuously decide what state is best suited to current requirements, and change

the processor’s state appropriately.
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Our thesis is that it is useful for the operating system, instead of merely the hard-

ware, to perform such processor energy management. It is in a better position than the

hardware to understand the nature of the applications running, and therefore to effectively

estimate future processor functionality requirements. Meanwhile, it is close enough to the

hardware to be able to efficiently modify the processor state when necessary. In this dis-

sertation, we will explore various ways in which the operating system can reduce processor

energy consumption.

I.2 Processor states

Processor energy management involves switching between processor states of vari-

able power. Modern processors have two main types of low-power states: sleep and reduced-

voltage.

Essentially all modern processors, even ones not designed for mobile use, have sleep

states. In a sleep state, the processor performs little or no work, and has consequently

reduced power consumption. Often a processor will have multiple sleep states, with some

having lower power consumption but requiring a greater delay to return to the normal state or

having less functionality (such as not performing bus snooping). For example, Intel’s Mobile

Pentium III has seven states: Normal, Stop Grant, Auto Halt, Quick Start, HALT/Grant

Snoop, Sleep, and Deep Sleep [Int01]. Deep Sleep consumes the least power but requires

30 µs to return to the Normal state; Auto Halt, in contrast, requires only 10 bus clocks to

return to the Normal state. Using a low-power state when processing power is not needed

can therefore substantially reduce energy consumption, albeit at the cost of some delay when

the CPU must return to a higher-power state.

A small but growing number of processors, including Transmeta’s CrusoeTM chips

and AMD’s Mobile K6-2 and Mobile Athlon 4 chips, have dynamic voltage scaling (DVS), the

ability to dynamically change the CPU voltage level without rebooting. In a reduced-voltage

state, the processor uses a lower supply voltage, thereby consuming less power and less energy.

In general, CMOS circuits consume power proportional to V 2f where V is the voltage and f is

the frequency. Energy consumption per cycle is power consumption divided by frequency, so

energy consumption is proportional to V 2. In other words, reducing the voltage quadratically
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reduces the energy needed to perform the same number of cycles. However, a performance

trade-off arises because running at a lower voltage increases gate settling times and thus

necessitates running at a lower frequency. The maximum valid frequency for a given voltage

is roughly linear in voltage; more accurately, it is proportional to (V − Vth)2/V where Vth is

the threshold voltage of the CMOS process. Due to this trade-off between performance and

energy consumption, the decision about when to raise or lower the speed is a complex one

requiring knowledge about CPU requirements both now and in the future. DVS algorithms

attempt to predict such requirements and adjust speed and voltage accordingly.

I.3 Dissertation structure

This dissertation has seven chapters and two appendices. The first chapter is this

introduction. The last chapter offers conclusions and describes avenues for future work. The

five intermediate chapters address the following.

Chapter II describes how software, especially the operating system, can manage

the energy consumption of computer components. We present a survey of software energy

management techniques to demonstrate how software can be an effective complement to

hardware in reducing energy consumption. This chapter also serves as useful background

for the remaining chapters, as it describes processor characteristics and current software

management techniques for processors.

Chapter III describes techniques we developed for taking better advantage of pro-

cessor sleep modes than MacOS 7.5 had before. We show that turning off the CPU when all

threads are idle is a better approach than turning it off after a certain period of user inac-

tivity. We demonstrate how various modifications to the way the operating system handles

process scheduling can make this technique even more effective.

Chapter IV introduces PACE, our method for improving existing dynamic voltage

scaling algorithms. PACE works by replacing each speed schedule such an algorithm produces

with a performance-equivalent schedule having lower expected energy consumption. Imple-

menting PACE requires statistical modeling of distributions of tasks’ CPU requirements, so

we give methods and heuristics we developed for doing this modeling and incorporating the

results into PACE’s optimal formula. We show that PACE is extremely effective on simu-
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lated workloads, reducing processor energy consumption of DVS algorithms by an average

of 20.6%.

Chapter V examines the workloads we observed in VTrace traces collected on users’

machines over the course of several months each. We perform several analyses of these

workloads to devise guidelines for the design of dynamic voltage scaling algorithms. For

instance, we discover that user-interface events of different categories, such as pressing a

letter key or pressing the enter key, trigger significantly different amounts of processing.

Therefore, a dynamic voltage scaling algorithm can gain significant information about future

processing needs by observing when user-interface events occur and to what category they

belong.

Chapter VI tells how we implemented RightSpeed, a task-based dynamic voltage

scaling system for Windows 2000 that incorporates the theories of Chapter IV and the

suggestions of Chapter V. This expansion of the operating system allows applications to

specify when tasks begin and end, and what their deadlines are, to guide appropriate dynamic

voltage scaling decisions. RightSpeed can also automatically detect the characteristics of

certain tasks triggered by user-interface events. We have implemented RightSpeed on two

systems capable of dynamic voltage scaling, one containing a Transmeta CrusoeTM chip and

the other containing an AMD Mobile Athlon 4 chip. We show that RightSpeed uses little

background overhead, about 1.2%, and implements operations such as PACE calculation in

only microseconds. We find that PACE is not effective at saving energy on these processors,

but expect it to be more worthwhile in the future as processors with greater ranges of speeds

become available.
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Chapter II

Software Energy Management

II.1 Introduction

This chapter describes how software is used to manage the energy consumption of

various computer components. It thus provides background on the general issue of software

energy management. It also helps motivate the central issue of this thesis, that software

should play a large role in energy management.

We classify the software issues created by power-saving hardware features into three

categories: transition, load-change, and adaptation. The transition problem involves an-

swering the question, “When should a component switch from one mode to another?” The

load-change problem involves answering the question, “How can the functionality needed

from a component be modified so that it can more often be put into low-power modes?”

The adaptation problem involves answering the question, “How can software be modified

to permit novel, power-saving uses of components?” Each of the software strategies we will

consider addresses one or more of these problems.

Different components have different energy consumption and performance charac-

teristics, so it is generally appropriate to have a separate energy management strategy for

each such component. Thus in this chapter we will generally consider each component sepa-

rately. For each component, first we will discuss its particular hardware characteristics, then

we will discuss what transition, load-change, and adaptation solutions have been proposed
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Category Description
Transition When should a component switch between modes?
Load-change How can a component’s functionality needs be modified so it can

be put in low-power modes more often?
Adaptation How can software permit novel, power-saving uses of components?

Table II.1: Categories of energy-related software problems

for that component. The components whose software power management issues are most sig-

nificant are the secondary storage device, the processor, the wireless communication device,

and the display, but we will also briefly discuss other components.

This chapter is organized as follows. Section II.2 discusses general issues in devel-

oping and evaluating solutions to the problems we have discussed. Sections II.3, II.4, II.5,

and II.6 talk about specific problems and solutions involving the secondary storage device,

the processor, the wireless communication device, and the display, respectively. Section II.7

considers other, miscellaneous, components. Section II.8 talks about strategies that deal with

the system itself as a component to be power-managed. Finally, in Section II.9, we conclude.

II.2 General Issues

II.2.1 Strategy types

We call a strategy for determining when to switch from one component mode to

another a transition strategy. Transition strategies require two sorts of information about a

component: knowledge about its mode characteristics and information about its future func-

tionality requirements. By mode characteristics we mean the advantages and disadvantages

of each mode the component can be in, including how much power is saved by being in it,

how much functionality is sacrificed by entering it, and how long it will take to return from

it.

Mode characteristics are generally more easily obtained than future functionality

requirements, so the most difficult part of a transition strategy is predicting future func-

tionality requirements. Thus, transition strategies are sometimes called prediction strategies.
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The most common, but not the only, prediction tactic is to assume that the longer a compo-

nent has been inactive, the longer it will continue to be inactive. Combining this prediction

method with knowledge about mode characteristics then leads to a period t such that when-

ever the component is inactive in a certain mode for longer than t, it should be placed in a

lower-power mode. Such a period is called an inactivity threshold, and a strategy using one

is called an inactivity threshold strategy.

We call a strategy for modifying the load on a component to increase its use of low-

power modes a load-change strategy. Disk caching is an example, since it can reduce the load

on a hard disk and thereby reduce its power consumption. Note that modifying component

load does not always mean reducing it; sometimes merely reordering service requests can

reduce power consumption. For instance, the hard disk will consume less power if one makes

a disk request immediately before spinning the disk down than if one makes the request

immediately after spinning it down.

We call a strategy for allowing components to be used in novel, power-saving ways

an adaptation strategy. An example is modifying file layout on secondary storage so that

magnetic disk can be replaced with lower-power flash memory.

II.2.2 Levels of energy management

Energy management can be done at several levels in the computer system hierarchy:

the component level, the operating system level, the application level, and the user level. The

end-to-end argument [SRC84] suggests that this management should be performed at the

highest level possible, because lower levels have less information about the overall workload.

However, certain types of strategy are inappropriate for the highest levels. Most strategies

are inappropriate for the user, since the user lacks knowledge about power consumption of

each component, is unable to make decisions within milliseconds or faster, and is generally

unwilling to make frequent energy management decisions. Problems with the application

level are that applications operate independently and that applications lack certain useful

information about the state of the machine because of operating system abstraction. For

these reasons, most energy management is best performed at the operating system level. The

user typically just makes a few high-level decisions and applications typically just reduce their
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use of components.

One way to get the advantages of application-level management without most as-

sociated disadvantages is to use application-aware adaptation [IM93, NPS95]. In such a

system, each application explicitly tells the operating system what its future needs are, and

the operating system notifies each application whenever is a change in the state of the system

relevant to energy management decisions. Thus, if an energy management strategy has to

be implemented at the operating system level, it can still get information about the needs of

an application from the definitive source: the application itself. Furthermore, if an energy

management strategy is best implemented at the application level, it can be performed using

machine state information normally confined to the operating system. Unfortunately, it is

seldom the case that applications have the necessary knowledge or sophistication to take

advantage of the ability to obtain or supply power-relevant information.

II.2.3 Strategy evaluation

When evaluating power management strategies, there are several points to remem-

ber. First, the effect of a strategy on the overall system power consumption is more important

than its effect on the particular component it concerns. For example, a 50% reduction in

modem power sounds impressive, but if the modem only accounts for 4% of total power

consumption, this savings will only result in a 2% decrease in total power.

Second, it is important to use as the baseline the current strategy, rather than

the worst possible strategy. For example, it would not be sufficient to simply know that a

new strategy causes the disk motor to consume 19% of its maximum possible power. If the

current strategy already caused it to be off 80% of the time, this would represent a small

power reduction, but if the current strategy only turned it off 20% of the time, this would

represent a significant power reduction.

Third, minimum energy consumption (and thus maximum battery lifetime in the

case of portable computers) is not necessarily what users want—they want to maximize the

amount of work they can accomplish with a given amount of energy, not simply the amount

of time the computer can remain running on that amount of energy. For example, consider

a strategy that halves the CPU speed and increases battery lifetime by 50%. If the sluggish
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response time makes papers take 10% longer to write, it is not reasonable to call the new

strategy a 50% improvement just because the machine stays on 50% longer. The user can only

write 36% more papers with one battery, so the strategy is really only a 36% improvement.

Thus, to completely evaluate a new strategy, one must take into account not only how much

power it saves, but also how much it extends or diminishes the time tasks take.

Fourth, when evaluating a strategy, it is important to consider and quantify its

effect on components it does not directly manipulate. For example, a strategy that slows

down the CPU may cause a task to take longer, thus causing the disk and backlight to be

on longer and consume more energy.

Fifth, to be completely accurate in evaluations of battery lifetime on portable com-

puters, one also has to consider that battery capacity is not constant. Battery capacity can

vary depending on the rate of power consumption [Pow95] and on the way that that rate

changes with time [ZR97]. Thus, it may be important to understand not only how much

a strategy reduces power consumption, but also how it changes the function of power con-

sumption versus time. Also, it means that computing battery lifetime is more difficult than

just dividing a rated energy capacity by total power consumption.

In conclusion, there are four things one must determine about a component power

management strategy to evaluate it: how much it reduces the power consumption of that

component; what percentage of total system power, on average, is due to that component;

how much it changes the power consumption of other components; and how it affects battery

capacity through its changes in power consumption. The first, third, and fourth require

simulation of the strategy; the second requires a power budget describing the average power

consumption of each system component. In the next subsection, we will give some such

budgets.

II.2.4 Power budget

Table II.2 shows examples of average power consumption for the components of

some portable computers when power-saving techniques are used. This table shows mea-

surements taken only when the computers were running off battery power, since we are most

concerned with power management at such times; power management when a machine is
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Component Hypo-
thetical
386

Duo 230 Duo 270c Duo 280c Average

Processor 4% 17% 9% 25% 14%
Hard disk 12% 9% 4% 8% 8%
Backlight 17% 25% 26% 25% 23%
Display 4% 4% 17% 10% 9%
Modem n/a 1% 0% 5% 2%
FPU 1% n/a 3% n/a 2%
Video 26% 8% 10% 6% 13%
Memory 3% 1% 1% 1% 2%
Other 33% 35% 28% 22% 30%
Total 6 W 5 W 4 W 8 W 6 W

Table II.2: For various portable computers, percentage of total power used by each component
when power-saving techniques are used [Lor95a, Mac91]

plugged in is less critical, may have different tradeoffs, and may experience different user

behavior. Note that power supply inefficiency is not treated as a separate category, but

rather as a “tax” on all power consumed by each component. So, for instance, if the power

supply system is 80% efficient, then instead of attributing 20% of power consumption to the

power supply we increase the effective power consumption of each component by 25%. The

first machine is a hypothetical 386DXL-based computer [Mac91]. The next three examples

describe measurements of Macintosh PowerBook Duo machines [Lor95a]. The Duo 230 has

a supertwist monochrome display while the other Duos have active-matrix color displays.

The power budget of Table II.2 indicates the magnitude of possible power savings.

For instance, since the hard disk consumes only 8% of total power on the Duo 280c given

its current power-saving methods, better techniques for managing hard disk power could

save at most 8% of total system power, increasing battery lifetime by at most 9%. With

power management active, the main consumers of power include the backlight, processor,

video system, and hard disk. Thus, these are the components for which further power-saving

methods will be most important.

Note that these breakdowns are likely to change as time progresses [HDP+95]. For

instance, wireless communication devices are increasingly appearing in portable computers,
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adding about 1 W to total power consumption. Hardware improvements will decrease the

power consumption of various other components, but this rate of decrease will be different for

different components. In 1994, Douglis et al [DKM94b] observed that later models of portable

computers seemed to spend a greater percentage of their power consumption on the hard

disk than earlier models. Presumably, this was because later models had substantial relative

savings in other components’ power but not as much savings in hard disk power. These

forecasts suggested that as time progressed, power-saving techniques might become more

important for the display and hard disk, and less important for the processor. However, this

turned out not to be the case, as in the intervening seven years processor power consumption

has far outpaced disk power consumption as processor speeds escalated according to Moore’s

law. In the coming years, we may see a reversing of that trend, as users become more

satisfied with moderate processor speeds and as processor manufacturers increasingly use

lower processor supply voltages.

II.2.5 Battery technology

The importance of energy management in portable computers arises as much from

limited battery capacity as from high power use. And, unfortunately, battery technology

has been improving at only a modest pace in terms of increased capacity per unit weight

and volume. The highest capacity battery technology currently used in portables is lithium

ion, providing as much as 380 W-h/L and 135 W-h/kg [Fuj97]. This is an improvement over

the roughly 260–330 W-h/L and 120 W-h/kg achievable from them in 1995 and the roughly

180 W-h/L achievable from them in 1991. Most impressive, though, is their improvement over

earlier battery technologies, such as nickel-metal hydride with its 150 W-h/L and 50 W-h/kg

in 1995 and nickel-cadmium with its 125 W-h/L and 50 W-h/kg in 1995 [Pow95]. Technolo-

gies in development, such as lithium polymer, lithium anode, zinc-manganese dioxide, and

zinc-air, may lead to even higher battery capacities in the future [Pow95]. As an example

of the battery capacity one can get today, a modern Dell Inspiron 4000 laptop comes with a

26.5 W-h lithium ion battery [Del01].
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II.3 Secondary Storage

II.3.1 Hardware features

Secondary storage in modern computers generally consists of a magnetic disk sup-

plemented by a small amount of DRAM used as a disk cache; this cache may be in the CPU

main memory, the disk controller, or both. Such a cache improves the overall performance of

secondary storage. It also reduces its power consumption by reducing the load on the hard

disk, which consumes more power than the DRAM.

Most hard disks have five power modes; in order of decreasing power consumption,

these are active, idle, standby, sleep, and off [HDP+95]. In active mode, the disk is seeking,

reading, or writing. In idle mode, the disk is not seeking, reading, or writing, but the motor

is still spinning the platter. In standby mode, the motor is not spinning and the heads are

parked, but the controller electronics are active. In sleep mode, the host interface is off

except for some logic to sense a reset signal; thus, if there is a cache in the disk controller,

its contents are lost. Transitions to active mode occur automatically when uncached data is

accessed. Transitions to standby and sleep modes occur when explicit external directives are

received; this is how software power-saving strategies influence hard disk power consumption.

Having the motor off, as in the standby mode, saves power. However, when it needs

to be turned on again, it will take considerable time and energy to return to full speed. If

this energy is greater than the savings from having the motor off, turning the motor off may

actually increase energy consumption. Turning off the motor also has a performance impact,

since the next disk request will be delayed until the motor returns to full speed. In addition,

while the disk is returning to full speed, other components will typically continue consuming

power, also increasing energy use. Going to sleep mode is an analogous operation, although

one in which the savings in power, as well as the overhead required to return to the original

state, are greater. Table II.3 quantifies some time and energy considerations for various hard

disks.

A possible technology for secondary storage is an integrated circuit called flash

memory [CDLM93, DKM+94a, KNM95, MDK93, WZ94]. Like a hard disk, such memory

is nonvolatile and can hold data without consuming energy. Furthermore, when reading or

writing, it consumes only 0.15 to 0.47 W, far less than a hard disk. It has a read speed of
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Hard disk Toshiba
MK3017GAP

IBM Travel-
star 48GH

Fujitsu
MHL2300AT

Hitachi
DK22AA-18

Capacity 30 GB 48 GB 30 GB 18 GB
Idle power 0.7 W 0.9 W 0.85 W 0.8 W
Standby power 0.3 W 0.25 W 0.28 W 0.25 W
Sleep power 0.1 W 0.1 W 0.1 W 0.125 W
Spin-up time 4 sec 1.8 sec 5 sec 3 sec
Spin-up energy 10.8 J 9.0 J 22.5 J 13.5 J

Table II.3: Characteristics of various hard disks [Tos01, IBM01, Fuj01, Hit01]

about 85 ns per byte, similar to DRAM, but a write speed of about 4–10 µs per byte, about

10–100 times slower than hard disk. However, since flash memory has no seek time, its overall

write performance is not that much worse than that of magnetic disk; in fact, for sufficiently

small random writes, it can actually be faster. Flash memory is technically read-only, so

before a region can be overwritten it must be electrically erased. Such erasure is done one

full segment at a time, with each segment 0.5–128 KB in size and taking about 15 µs per

byte to erase [WZ94]. A segment can only be erased 100,000 to 1,000,000 times in its lifetime

before its performance degrades significantly, so the operating system must ensure that the

pattern of erasures is reasonably uniform, with no single segment getting repeatedly erased.

The current cost per megabyte of flash is $1–3 [She01], making it about 125–450 times more

expensive than hard disk and about 8–24 times more expensive than DRAM. Flash memory

offers great opportunities for secondary storage power savings if it can be substituted for the

hard disk or used for caching. Before that, however, software must be designed to overcome

the many limitations of flash memory, especially its poor write performance.

II.3.2 Transition strategies

Transition strategies for magnetic disks can be of three kinds: deciding when to go

to sleep mode, deciding when to go to standby mode, and deciding when to turn off the disk

completely. Most are of the first kind. We know of no studies of the second kind, for reasons

we will discuss in the next paragraph. Strategies of the third kind also exist, but are generally

simple inactivity threshold strategies that have not been experimentally scrutinized.
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One reason for the lack of study of transition strategies for deciding when to enter

standby mode is that this mode is a relatively new feature on disks. Another reason is that

it may often be better to enter sleep mode than standby mode. Sleep mode consumes less

power, and since the time it takes to go from sleep to idle mode is dominated by the spin-up

time of the motor, this transition takes no longer than that from standby to idle mode.

The main advantage to standby mode is that on-disk cache contents are preserved; this may

or may not be significant, depending on the caching algorithm in the disk controller, and

whether or not the main memory disk cache is a superset of the contents of the controller

disk cache.

II.3.2.1 Fixed inactivity threshold

The most common transition strategy for going into sleep mode is to enter that

mode after a fixed inactivity threshold. When hard disks allowing external control over

the motor were first developed, their manufacturers suggested an inactivity threshold of 3–5

minutes. However, researchers soon discovered that power consumption could be minimized

by using inactivity thresholds as low as 1–10 seconds; such low thresholds save roughly twice

as much power as a 3–5 minute threshold [DKM94b, LKHA94].

The greater power savings from using a smaller inactivity threshold comes at a cost,

however: perceived increased user delay. Spinning down the disk more often makes the user

wait more often for the disk to spin up. The inactivity threshold yielding minimum disk

power results in user delay of about 8–30 seconds per hour; some researchers believe this to

be an unacceptable amount of delay [DKM94b], although in absolute terms, this amount is

trivial. Another problem with short inactivity thresholds is that disks tend to last for only a

limited number of start-stop cycles, and excessively frequent spin up-spin down cycles could

cause premature disk failure. Thus, the best disk spin-down policy is not necessarily the one

that minimizes power consumption, but the one that minimizes power consumption while

keeping user delay and start-stop frequency at an acceptable level.

It is worth pointing out, although it should be obvious, that the time between

disk accesses is not exponentially distributed; the expected time to the next disk access is

generally an increasing function of the time since the last access. If interaccess times for

disk reference were exponentially distributed, the correct strategy would use an inactivity
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threshold of either zero or infinity [Gre94].

II.3.2.2 Changing inactivity threshold

There are several arguments for dynamically changing the inactivity threshold, not

necessarily consistent with each other. The first argument is that disk request interarrival

times are drawn independently from some unknown stationary distribution. Thus, as time

passes one can build up a better idea of this distribution, and from that deduce a good

threshold. The second argument is that the interarrival time distribution is nonstationary,

i.e., changing with time, so a strategy should always be adapting its threshold to the cur-

rently prevailing distribution. This distribution can be inferred from samples of the recent

distribution and/or from factors on which this distribution depends. The third argument

is that worst-case performance can be bounded by choosing thresholds randomly—any de-

terministic threshold can fall prey to a particularly nasty series of disk access patterns, but

changing the threshold randomly eliminates this danger.

If disk interarrival times are independently drawn from some unknown stationary

distribution, as the first argument states, then no matter what this distribution, there exists

an inactivity threshold that incurs a cost no more than e/(e − 1) times that of the optimal

off-line transition strategy [KMMO94]. One could find this threshold by keeping track of all

interarrival times so that the distribution, and thus the ideal threshold, could be deduced.

One algorithm of that type, using constant space, builds up a picture of the past

interarrival time distribution in the following indirect way [KLV95]. It maintains a set of

possible thresholds, each with a value indicating how effective it would have been. At any

point, the algorithm chooses as its threshold the one that would have performed the best.

Incidentally, “best” does not simply mean having the least power consumption; the valuation

might take into account the relative importance of power consumption and frequency of disk

spin-downs specified by the user. This algorithm has been shown to perform well on real

traces, beating many other practical algorithms.

Another strategy using a list of candidate thresholds is based on the second argu-

ment, that disk access patterns change with time [HLS96]. In this strategy, each candidate is

initially assigned equal weight. After each disk access, candidates’ weights are increased or

decreased according to how well they would have performed relative to the optimal off-line
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strategy over the last interaccess period. At any point, the threshold chosen for actual use

is the weighted average of all the candidates. Simulations show that this strategy works well

on actual disk traces. The developers of this strategy only considered using it to minimize

power consumption; however, it could easily be adapted to take frequency of spin-ups into

account.

Another dynamic strategy based on the second argument tries to keep the frequency

of annoying spin-ups relatively constant even though the interaccess time distribution is al-

ways changing [DKB95]. This strategy raises the threshold when it is causing too many

spin-ups and lowers it when more spin-ups can be tolerated. Several variants of this strategy,

which raise and lower the threshold in different ways, are possible. Simulation of these vari-

ants suggests that using an adaptive threshold instead of a fixed threshold can significantly

decrease the number of annoying spin-ups experienced by a user while increasing energy

consumption by only a small amount.

Note that all the dynamic strategies we have described that are based on the second

argument make inferences about the current distribution of disk access interarrival times

based on recent samples of this distribution. However, there are likely other factors on which

this distribution depends and on which such inferences could be based, such as the current

degree of multiprogramming or which applications are running. Additional research is needed

to determine which of these factors can be used effectively in this way.

By the third argument, a strategy should make no assumptions about what the

disk access pattern looks like, so that it can do well no matter when disk accesses occur.

One such strategy chooses a new random threshold after every disk access according to the

cumulative distribution function

π(t) =
et/c − 1
e− 1

,

where c is the number of seconds it takes the running motor to consume the same amount

of energy it takes to spin up the disk [KMMO94]. This strategy has been proven ideal

among strategies having no knowledge of the arrival process. Note, however, that almost

all transition strategies described in this chapter do purport to know something about the

arrival process, and thus are capable of beating this strategy. In other words, although this

strategy does have the best worst-case expected performance, it does not necessarily have
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the best typical-case performance.

II.3.2.3 Alternatives to an inactivity threshold

Some transition strategies have been developed that do not use an inactivity thresh-

old explicitly [DKM94b]. One such strategy is to predict the actual time of the next disk

access to determine when to spin down the disk. However, simulations of variants of this

strategy show that they provide less savings than the best inactivity threshold strategy, ex-

cept when disk caching is turned off. This may be because filtering a pattern of disk accesses

through a disk cache makes it too patternless to predict. Another strategy is to predict the

time of the next disk request so the disk can be spun up in time to satisfy that request. How-

ever, no techniques proposed for this have worked well in simulation, apparently because the

penalty for wrong prediction by such strategies is high. Despite the shortcomings of the non-

threshold-based transition strategies studied so far, some researchers remain hopeful about

the feasibility of such strategies. Simulation of the optimal off-line strategy indicates that

such strategies could save as much as 7–30% more energy than the best inactivity threshold

method.

II.3.3 Load-change strategies

Another way to reduce the energy consumption of a hard disk is to modify its

workload. Such modification is usually effected by changing the configuration or usage of the

cache above it.

One study found that increasing cache size yields a large reduction in energy

consumption when the cache is small, but much lower energy savings when the cache is

large [LKHA94]. In that study, a 1 MB cache reduced energy consumption by 50% compared

to no cache, but further increases in cache size had a small impact on energy consumption,

presumably because cache hit ratio increases slowly with increased cache size [ZS97]. The

study found a similar effect from changing the dirty block timeout period, the maximum

time that cache contents are permitted to be inconsistent with disk contents. Increasing this

timeout from zero to 30 seconds reduced disk energy consumption by about 50%, but fur-

ther increases in the timeout delay had only small effects on energy consumption [LKHA94].
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Another possible cache modification is to add file name and attribute caching. Simulation

showed a moderate disk energy reduction of 17% resulting from an additional 50 KB of cache

devoted to this purpose [LKHA94].

Prefetching, a strategy commonly used for performance improvement, should also

be effective as an energy-saving load-change strategy. If the disk cache is filled with data that

will likely be needed in the future before it is spun down, then more time should pass before

it must again be spun up. This idea is similar to that of the Coda file system [SKM+93], in

which a mobile computer caches files from a file system while it is connected so that when

disconnected it can operate independently of the file system.

Another approach to reducing disk activity is to design software that reduces paging

activity. This can be accomplished by reducing working set sizes and by improving memory

access locality. There are many things operating system and application designers can do to

achieve these goals.

II.3.4 Adaptation strategies for flash memory as disk cache

Flash memory has two advantages and one disadvantage over DRAM as a disk

cache. The advantages are nonvolatility and lower power consumption; the disadvantage is

poorer write performance. Thus, flash memory might be effective as a second-level cache

below the standard DRAM disk cache [MDK93]. At that level, most writes would be flushes

from the first-level cache, and thus asynchronous. However, using memory with such different

characteristics necessitates novel cache management strategies.

The main problem with using flash memory as a second-level cache is that data

cannot be overwritten without erasing the entire segment containing it. One solution is

to ensure there is always a segment with free space for writing; this is accomplished by

periodically choosing a segment, flushing all its dirty blocks to disk, and erasing it [MDK93].

One segment choosing strategy is to choose the one least recently written; another is to

choose the one least recently accessed. The former is simpler to implement and ensures no

segment is cleaned more often than another, but the latter is likely to yield a lower read miss

ratio. Unfortunately, neither may be very good in packing together blocks that are referenced

together. One approach is to supplement the strategy with a copying garbage collector, such
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as that found in LFS [RO92], to choose recently used blocks of a segment about to be erased

and write them into a segment that also contains recently used blocks and is not going to be

erased.

Simulations have shown that using a second-level flash memory cache of size 1–

40 MB can decrease secondary storage energy consumption by 20–40% and improve I/O

response time by 30–70% [MDK93]. Thus, using appropriate cache management policies

seem to allow a flash memory second-level cache to reduce energy consumption and still

provide equal or better performance than a system using a traditional cache. The simulations

would have been more persuasive, however, if they had compared the system with flash to

one with a DRAM second-level cache rather than to one with no second-level cache.

II.3.5 Adaptation strategies for flash memory as disk

Flash memory is a low-power alternative to magnetic disk. However, the large

differences between flash memory and magnetic disk suggest several changes to file system

management. Since flash has no seek latency, there is no need to cluster related data on

flash memory for the purpose of minimizing seek time [CDLM93]. Since flash is practically

as fast as DRAM at reads, a disk cache is no longer important except to be used as a

write buffer [CDLM93]. Such a write buffer would make writes to flash asynchronous, thus

solving another problem of flash memory: poor write performance. In fact, if SRAM were

used for this write buffer, its permanence would allow some writes to flash to be indefinitely

delayed [DKM+94a, WZ94]. Finally, unlike magnetic disk, flash memory requires explicit

erasure before a segment can be overwritten, a slow operation that can wear out the medium

and must operate on a segment at a time. One solution to these problems is to use a log-

structured file system like LFS [KNM95, RO92], in which new data does not overwrite old

data but is instead appended to a log. This allows erasures to be decoupled from writes and

done asynchronously, thus minimizing their impact on performance. A flash file system also

needs some way to ensure that no physical segment is cleaned especially often. One way to

do this is to make sure that physical segments containing infrequently modified data and

ones containing frequently modified data switch roles occasionally [WZ94].

Simulations of flash file systems using some of these ideas have found that they

19



can reduce secondary storage power consumption by 60–90% while maintaining aggregate

performance comparable to that of magnetic disk file systems [DKM+94a]. However, at high

levels of utilization, the performance of file systems using asynchronous erasure can degrade

significantly due to the overhead of that erasure.

II.3.6 Adaptation strategies for wireless network as disk

Another hardware approach to saving secondary storage energy is to use wireless

connection to a plugged-in file server instead. Offloading storage has the advantage that

the storage device can be big and power-hungry without increasing the weight or power

consumption of the portable machine. Disadvantages include increased power consumption

by the wireless communication system, increased use of limited wireless bandwidth, and

higher latency for file system accesses. Adaptation strategies can help minimize the impact

of the disadvantages but retain the advantages.

The general model for using wireless communication as secondary storage is to have

a portable computer transmit data access requests to, and receive data from, a server. An

improvement on this is to have the server make periodic broadcasts of especially popular

data, so the portable computer will have to waste less power transmitting requests [IVB94].

A further improvement is to interleave index information in these broadcasts, so a portable

computer can anticipate periods of no needed data and shut its receiver off during them.

Another model for using wireless communication for storage is proposed in exten-

sions to the Coda scheme [SKM+93]. In this model, the portable computer storage system

functions merely as a large cache for the server file system. When the portable computer

is not wired to the file system server, it services cache misses using wireless communica-

tion. Because such communication is slow and bandwidth-consuming, the cache manager

seeks to minimize its frequency by hoarding files that are anticipated to be needed during

disconnection.

A third model for using wireless communication for storage, used by InfoPad, is

to perform all processing on an unmoving server [BBB+94, BBB+95]. In this model, the

portable “computer” is merely a terminal that transmits and receives low-level I/O informa-

tion, so the energy consumption for general processing and storage is consumed by plugged-
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in servers instead of the mobile device. In this way, portable storage and CPU energy

consumption are traded for high processing request latency, significant network bandwidth

consumption, and additional energy consumption by the portable wireless device.

The limiting factor in all of these cases is network bandwidth; what is practical

depends on the bandwidth between the local system and the data source. A packet radio

connection at 28.8 Kb/s is very different than the type of multi-megabit per second system

that could be implemented within a building.

II.3.7 Future hardware innovations

Researchers working on technological advances in hardware can also do much to aid

software techniques in reducing power. To minimize the impact of decisions to spin down

the hard disk, the energy and time consumed by a disk when spinning up should be reduced.

Since disk power use drops roughly quadratically with rotation speed, it would also be useful

to enable the disk to be put into low rotation speed modes, so that software could sacrifice

some I/O performance to obtain reduced disk power consumption. An additional benefit of

reduced rotation speed would be a reduction in spin-up times. To make it easier for software

to achieve good performance with flash memory, its design should emphasize fast writing and

erasing, as well as the ability to erase at the same time that data is being read or written.

Increasing the number of erasures possible in the lifetime of a segment would simplify the

management of flash memory.

II.4 Processor

II.4.1 Hardware features

Processors designed for low-power computers have many power-saving features. One

power-saving feature is the ability to slow down the clock. Another is the ability to selectively

shut off functional units, such as the floating-point unit; this ability is generally not externally

controllable. Such a unit is usually turned off by stopping the clock propagated to it. Finally,

there is the ability to shut down processor operation altogether so that it consumes little or

no energy. When this last ability is used, the processor typically returns to full power when
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the next interrupt occurs.

In general, slowing down the processor clock without changing the voltage is not

useful. Power consumption P is essentially proportional to the clock frequency f , the switch-

ing capacitance C, and the square of the voltage V (P ∝ CV 2f), but the time t it takes

the processor to complete a task is inversely proportional to the clock frequency (t ∝ 1/f).

Since the energy E it takes the processor to complete a task is the product of its power

consumption and the time it spends (E = Pt), this energy consumption is invariant with

clock speed. Thus, reducing the clock speed lengthens processor response time without re-

ducing the amount of energy the processor consumes during that time. In fact, slowing

the clock speed will usually increase total energy consumption by extending the time other

components need to remain powered. However, if the voltage can be decreased whenever the

clock speed is reduced, then energy consumption, which is proportional to the square of the

voltage (E ∝ CV 2), would usually be reduced by slowing the clock.

Dynamic voltage scaling (DVS) is the ability of a processor to dynamically change

its supply voltage to reduce its energy consumption. Since this necessitates a reduction

in clock frequency whenever voltage is reduced, DVS also involves dynamic changing of

clock frequency. In general, the speed used is roughly proportional to the voltage, so en-

ergy consumption is proportional to the square of the frequency (E ∝ f2) [WWDS94].

More precisely, frequency should be set equal to k(V − Vth)2/V where k is some con-

stant [CSB92]. This yields the following relationship between energy and frequency:

E ∝
(

Vth + f
2k +

√
Vthf

k +
(

f
2k

)2
)2

.

Turning off a processor has little downside; no excess energy is expended turning the

processor back on, the time until it comes back on is barely noticeable, and the state of the

processor is unchanged from it turning off and on, unless it has a volatile cache [GDE+94].

On the other hand, there is a clear disadvantage to reducing the clock rate: tasks take longer.

There may also be a slight delay while the processor changes clock speed.

Reducing the power consumption of the processor saves more than just the energy

of the processor itself. When the processor is doing less work, or doing work less quickly,

there is less activity for other components of the computer, such as memory and the bus.

For example, when the processor on the Macintosh Duo 270c is off, not only is the 1.15 W of
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the processor saved, but also an additional 1.23 W from other components [Lor95a]. Thus,

reducing the power consumption of the processor can have a greater effect on overall power

savings than it might seem from merely examining the percentage of total power attributable

to the processor.

II.4.2 Transition strategies for turning the processor off

When the side effects of turning the processor off and on are insignificant, the

optimal off-line transition strategy is to turn it off whenever the processor will not be needed

until the next interrupt occurs. With a well-designed operating system, this can be deduced

from the current status of all processes. Thus, whenever any process is running or ready to

run, the processor should not be turned off; when all processes are blocked, the processor

should be turned off [LS96, SCB96, SU93]. Examples of operating systems using this strategy

are Windows [Con92, Pie93] and UNIX.

MacOS, however, uses a different strategy, perhaps because its strategy was designed

when processors did suffer side effects from turning off. It uses an inactivity threshold,

as is commonly used for hard disk power management. The processor is shut off when

there have been no disk accesses in the last fifteen seconds and no sound chip accesses,

changes to the cursor, displaying of the watch cursor, events posted, key presses, or mouse

movements in the last two seconds. The savings achievable from this strategy vary greatly

with workload [Lor95b, Lor95a].

II.4.3 Load-change strategies when the CPU can turn off

Given a transition strategy that turns off the processor when it is not performing

any tasks, the goal of a load-change strategy is simply to limit the energy needed to perform

tasks. This suggests three approaches: reducing the time tasks take, using lower-power

instructions, and reducing the number of unnecessary tasks. Below we present several load-

change strategies that use different subsets of these approaches.

One technique, which uses the first two approaches, is to use more efficient operating

system code [SML94]. However, if overall system performance has not been a sufficient reason

for system designers and implementors to write good code, energy efficiency considerations
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are unlikely to make much difference.

Another technique, which uses the same approaches, is to use energy-aware com-

pilers, i.e., compilers that consider the energy efficiency of generated code [TMWL96]. Tra-

ditional compiler techniques have application as load-change strategies in that they reduce

the amount of time a processor takes to complete a task. Another way for the compiler to

decrease energy consumption is to carefully choose which instructions to use, since some in-

structions consume more power than others. However, preliminary studies indicate that the

primary gain from code generation is in decreasing the number of instructions executed, not

in choosing between different equally long code sequences [TMWL96]. There may be some

special cases, such as generating entirely integer versus mixed integer and floating point code,

where the effects are significant, but we believe that these are the exception.

Another load-change technique uses the third approach, performing fewer unneces-

sary tasks [LS96]. In some cases, when an application is idle, it will “busy-wait” for an event

instead of blocking. Then, the standard transition strategy will not turn off the processor

even though it is not doing any useful work. One way to solve this problem is to force an

application to block for a certain period whenever it satisfies certain conditions that indicate

it is likely to be busy-waiting and not performing any useful activity. We will discuss our

strategy for this further in Chapter III. We will describe simulations of such a strategy

using traces of machines running on battery power; these simulations show that the strategy

would allow the processor to be off, on average, 66% of the time, compared to 47% when no

measures were taken to forcibly block applications.

II.4.4 Transition strategies for dynamically changing CPU speed

As explained before, slowing the clock is useless if voltage is kept constant. There-

fore, when we discuss strategies to take advantage of slowing the processor clock, we are

assuming that slowing the clock is accompanied by reducing the voltage. The voltage can

be reduced when the clock speed is reduced because under those conditions the longer gate

settling times resulting from lower voltage become acceptable.

Previous calculations have shown that the lowest energy consumption comes at

the lowest possible speed. However, performance is also reduced by reducing the clock
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speed, so any strategy to slow the clock must achieve its energy savings at the expense of

performance. Furthermore, reducing processor performance may cause an increase in the

energy consumption of other components, since they may need to remain on longer. Thus,

it is important to make an appropriate trade-off between energy reduction and performance.

Weiser et al. [WWDS94] and Chan et al. chan:1995 described the first strategies

for making this trade-off. They designed these strategies to achieve two general goals. The

first goal is to not delay the completion time of any task by more than several milliseconds.

This ensures that interactive response times do not lengthen noticeably, and ensures that

other components do not get turned off noticeably later. The second goal is to adjust CPU

speed gradually. This is desirable because voltage scaling causes the minimum voltage V

permissible at a clock speed f to be roughly linear in f . Thus, the number of clock cycles

executed in an interval I is proportional to
∫

I
f(t) dt, while the energy consumed during

that interval is roughly proportional to
∫

I
[f(t) + C]3 dt. Given these equations, it can be

mathematically demonstrated that the most energy-efficient way to execute a certain number

of cycles within a certain interval is to keep clock speed constant throughout the interval.

One strategy for adjusting CPU speed seeks to achieve these goals in the following

way [WWDS94]. Time is divided into 10–50 ms intervals. At the beginning of each interval,

processor utilization during the previous interval is determined. If utilization was high,

CPU speed is slightly raised; if it was low, CPU speed is slightly lowered. If, however, the

processor is falling significantly behind in its work, CPU speed is raised to the maximum

allowable. Simulations of this strategy show 50% energy savings when the voltage, normally

constrained to be 5 V, can be reduced to 3.3 V, and 70% savings when it can be reduced

to 2.2 V. Interestingly, the strategy shows worse results when the voltage can be reduced to

1 V, seemingly because the availability of the low voltage causes the strategy to generate

extreme variation in the voltage level over time. Obviously, a strategy should be designed

so that it never yields worse results when the range over which parameters can be varied

increases.

Another strategy also divides time into 10–50 ms intervals [CGW95]. At the be-

ginning of each interval, it predicts the number of CPU busy cycles that will occur during

that interval, and sets the CPU speed just high enough to accomplish all this work. There

are actually many variants of this strategy, each using a different prediction technique. In
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simulations, the most successful variants were one that always predicted the same amount

of work would be introduced each interval, one that assumed the graph of CPU work in-

troduced versus interval number would be volatile with narrow peaks, and one that made

its prediction based on a weighted average of long-term and short-term CPU utilization but

ignored any left-over work from the previous interval. The success of these variants suggests

that it is important for such a strategy to balance performance and energy considerations

by taking into account both short-term and long-term processor utilization in its predic-

tions. Too much consideration for short-term utilization increases speed variance and thus

energy consumption. Too much consideration for long-term utilization makes the processor

fall behind during especially busy periods and thus decreases performance.

Several authors, including Pering et al. [PBB98] and Grunwald et al. [GLF+00],

have shown that Weiser et al. and Chan et al.’s algorithms are impractical because they

require knowledge of the future. However, they have proposed practical versions of these

algorithms. Prediction methods they suggest include:

• Past. Predict the upcoming interval’s utilization will be the same as the last interval’s

utilization.

• Aged-a. Predict the upcoming utilization will be the average of all past ones. More

recent ones are more relevant, so weight the kth most recent by ak, where a ≤ 1 is a

constant.

• LongShort. Predict the upcoming utilization will be the average of the 12 most recent

ones. Weight the three most recent of these three times more than the other nine.

• Flat-u. Always predict the upcoming utilization will be u, where u ≤ 1 is a constant.

Speed-setting methods they suggest include:

• Weiser-style. If the utilization prediction x is high (> 70%), increase the speed by

20% of the maximum speed. If the utilization prediction is low (< 50%), decrease the

speed by 60− x% of the maximum speed.

• Peg. If the utilization prediction is high (> 98%), set the speed to its maximum. If

the utilization prediction is low (< 93%), decrease the speed to its minimum positive

value.
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• Chan-style. Set the speed for the upcoming interval just high enough to complete

the predicted work. In other words, multiply the maximum speed by the utilization to

get the speed.

However, dividing time into intervals and using those boundaries as deadlines is

somewhat arbitrary. For example, if a task arrives near the end of an interval, it does not

really have to complete by the end of that interval. Furthermore, without deadlines, there

is no particular reason to complete any given task by a certain time; it is best to simply

measure the average number of non-idle cycles per second and run the CPU at that speed.

(Transmeta’s LongRunTM system does something like this [Kla00].) Pering et al., recognizing

this, suggested considering deadlines when evaluating DVS algorithms [PBB98]. To do so,

they suggest considering a task that completes before its deadline to effectively complete at

its deadline.

Grunwald et al. [GLF+00] considered deadlines when they compared several of the

algorithms described above (as well as others not listed here) by implementing them on a

real system. They decided that although none of them are very good, Past/Peg is the best:

it never misses any deadlines for the workload they considered, yet still saves a small but

significant amount of energy.

There are several theoretical results that suggest approaches to scheduling CPU

speed based on task deadlines. One important result is that if a set of tasks has feasible dead-

lines, scheduling them in increasing deadline order will always make all the deadlines [LL73].

Another useful result, described by B lażewicz et al. [BEP+96, pp. 346–350], is that when the

rate of consumption of some resource is a convex function of CPU speed, an ideal schedule

will run each task at a constant speed. Yao et al. [YDS95] observe that with DVS, power

consumption is a convex function of CPU speed. They show how to compute an optimal

speed-setting policy by constructing an earliest-deadline-first schedule, and then choosing

the minimal possible speed for each task that will still make the deadlines.

However, one can only compute such optimal schedules if the tasks’ CPU require-

ments are known in advance, and task requirements in most systems are unpredictable ran-

dom variables; see, e.g., [SBB72]. For this reason, most research on scheduling for DVS has

focused on heuristics for estimating CPU requirements and attempting to keep CPU speed
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as constant as possible. In Chapter IV, we will describe our approaches for dynamic voltage

scaling to meet deadlines.

II.4.5 Load-change strategies when functional units can turn off

Typically, if functional units can be turned off, the chip internals turn them off

automatically when unused. This makes software transition strategies unnecessary and im-

possible to implement, but makes load-change strategies tenable. One such load-change

strategy is to use a compiler that clusters together several uses of a pipelined functional unit

so that the unit is on for less time. Another is, when compiling, to preferentially generate

instructions using functional units that do not get power-managed. However, no research

has been done yet on such load-change strategies. It is unclear whether the power savings

to be obtained from these strategies would be significant.

II.4.6 Future hardware innovations

There are several things that researchers working on technological advances in hard-

ware can do to increase the usefulness of software strategies for processor energy reduction.

Perhaps the most important is designing the motherboard so that reduction in the energy

consumption of the processor yields a consequent large reduction in the energy consumption

of other components. In other words, motherboard components should have states with low

power consumption and negligible transition side effects that are automatically entered when

the processor is not presenting them with work. Voltage scaling is not widely available, and

needs to be made more so. Once this happens, the software strategies that anticipate this

technology can be put to good use. Finally, if hardware designers can keep the time and

energy required to make transitions between clock speeds low, the savings from clock speed

transition strategies will be even greater.
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II.5 Wireless communication devices

II.5.1 Hardware features

Wireless communication devices are appearing with increasing frequency on

portable computers. These devices can be used for participating in a local or wide area

wireless network, or for interacting with disconnected peripherals like a printer or mouse.

They typically have five operating modes; in order of decreasing power consumption, these

are transmit, receive, idle, sleep, and off [HDP+95]. In transmit mode, the device is trans-

mitting data; in receive mode, the device is receiving data; in idle mode, it is doing neither,

but the transceiver is still powered and ready to receive or transmit; in sleep mode, the

transceiver circuitry is powered down, except sometimes for a small amount of circuitry lis-

tening for incoming transmissions. Typically, the power consumption of idle mode is not

significantly less than that of receive mode [SK97], so going to idle mode is not very use-

ful. Transitions between idle and sleep mode typically take some time. For example, HP’s

HSDL-1001 infrared transceiver takes about 10 µs to enter sleep mode and about 40 µs to

wake from it [Hew96], AT&T’s WaveLAN PCMCIA card and IBM’s infrared wireless LAN

card each take 100 ms to wake from sleep mode, and Metricom’s Ricochet wireless modem

takes 5 seconds to wake from sleep mode [SK97].

Some devices provide the ability to dynamically modify their transmission power.

Reducing transmission power decreases the power consumption of the transmit mode; it also

has the advantage of reducing the interference noise level for neighboring devices, leading

to a reduction in their bit error rates and enabling higher cell capacity. The disadvantage,

however, is that when a device reduces its transmission power, it decreases the signal to noise

ratio of its transmissions, thus increasing its bit error rate.

Wireless device power consumption depends strongly on the distance to the re-

ceiver. For instance, the wide-area ARDIS system, in which each base station covers a large

area, requires transmit power of about 40 W, but the wide-area Metricom system, which uses

many base stations each serving a small area, requires mobile unit transmit power of only

about 1 W [Cox95]. Local-area networks also tend to provide short transmission distances,

allowing low power dissipation. For instance, the WaveLAN PCMCIA card, meant for use in

such networks, consumes only about 1.875 W in transmit mode [Luc96b]. Even smaller dis-
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tances, such as within an office or home, yield even smaller power requirements. For instance,

the HSDL-1001 infrared transceiver consumes only 55 mW in transmit mode [Hew96], and

the CT-2 specification used for cordless telephones requires less than 10 mW for transmis-

sion [Cox95].

II.5.2 Transition strategies for entering sleep mode

Transition strategy issues for wireless communication devices entering sleep mode

are quite similar to those for hard disks, so the solutions presented for hard disks are generally

applicable to them. However, some features of wireless communication suggest two changes

to the standard inactivity threshold methods used with hard disks. First, because a wireless

communication device does not have the large mechanical component a hard disk has, the

time and energy required to put it in and out of sleep mode are generally much smaller.

Further, the user is unlikely to know when the unit is off or on unless some sort of monitor

is installed, so users should be unaware of start-up times unless they are unduly long. These

factors suggest a more aggressive energy management strategy such as using a much shorter

inactivity threshold. Second, it may be necessary to have wireless devices periodically exit

sleep mode for a short period of time to make contact with a server, so that the server

does not decide the unit is off or out of range and delete state information related to the

connection [Luc96a].

Experimental simulation has been used to evaluate the effect of some transition

strategies [SK97]. One simulation, which assumed a Ricochet modem was used only for the

retrieval of electronic mail, considered a strategy that put the modem to sleep whenever

no mail was being retrieved, and woke it up after a certain period of time to check for

new mail. It showed that using a period of about four minutes would reduce the energy

consumption of the wireless device by about 20%, and only cause mail to be, on average,

two minutes old when it was seen by the user. Another simulation assumed a WaveLAN

PCMCIA card was used only for Web browsing, and considered the strategy of putting the

wireless device to sleep whenever a certain inactivity threshold passed with no outstanding

HTTP transactions. It showed that using a very small inactivity threshold reduced power

consumption of the device by 67% without noticeably increasing the perceived latency of
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document retrieval.

II.5.3 Load-change strategies when sleep mode is used

One way to increase the amount of time a wireless device can spend sleeping is

simply to reduce network usage altogether. There are many strategies for doing this, some

examples of which are as follows. One strategy is to compress TCP/IP headers; this can

reduce their size by an order of magnitude, thus reducing the wireless communication activity

of a mobile client [DENP96]. Another strategy is to reduce the data transmission rate or

stop data transmission altogether when the channel is bad, i.e., when the probability of a

dropped packet is high, so that less transmission time is wasted sending packets that will be

dropped [ZR97]. Of course, if data transmission is ceased altogether, probing packets must

be sent occasionally so that the unit can determine when the channel becomes good again.

Yet another strategy is to have servers [NPS95] or proxies [FGBA96] use information about

client machine characteristics and data semantics to provide mobile clients with versions of

that data with reduced fidelity and smaller size; this reduces the amount of energy mobile

clients must expend to receive the data. For example, a data server might convert a color

picture to a black-and-white version before sending it to a mobile client. A fourth strategy

is to design applications that avoid unnecessary communication, especially in the expensive

transmit direction.

Another way is to use a medium access protocol that dictates in advance when each

wireless device may receive data. This allows each device to sleep when it is certain that no

data will arrive for it. For example, the 802.11 LAN standard has access points that buffer

data sent to wireless devices and that periodically broadcast a beacon message indicating

which mobile units have buffered data. Thus, each wireless device only has to be listening

when it expects a beacon message, and if it discovers from that message that no data is avail-

able for it, it may sleep until the next beacon message [BD96]. Of course, strategies such as

this either require a global (broadcast) clock or closely synchronized local clocks. Similar pro-

tocols, designed to increase battery life in one-way paging systems, include the Post Office

Code Standardization Advisory Group (POCSAG) protocol and Motorola’s FLEX proto-

col [MS95]. A different type of power-conserving protocol, which does not require buffering
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access points and is thus peer-to-peer, is LPMAC [MSGN+96]. LPMAC divides time into

fixed-length intervals, and elects one terminal in the network the network coordinator (NC).

The NC broadcasts a traffic schedule at the beginning of each interval that dictates when

each unit may transmit or receive data during that interval. Each interval ends with a short

contention period during which any unit may send requests for network time to the NC.

Thus, each mobile unit only needs be awake during the broadcast of the traffic schedule, and

may sleep until the next such broadcast if the schedule indicates that no one will be sending

data to it. This protocol does not require intermediate buffering because data is buffered at

the sending unit until the NC gives it permission to send.

II.5.4 Transition strategies for changing transmission power

Many approaches to dynamically changing the transmission power in wireless net-

works have been proposed. However, few of them were designed with consideration for the

battery lifetime of mobile units, being meant solely to achieve goals like guaranteeing limits

on signal to noise ratio, balancing received power levels, or maximizing cell capacities [RB96].

Here we will focus on those strategies that at least address the battery lifetime issue. Of

course, a strategy cannot consider battery lifetime alone, but must balance the need for high

battery lifetime with the need to provide reasonable cell capacity and quality of service.

A transition strategy to decide when to change power should should take into ac-

count the consequences of reducing transmission power: increased battery lifetime, lower bit

error rate for neighbors (enabling higher cell capacities), and higher bit error rate for one’s

own transmissions. Such a strategy can be local, meaning that it accounts only for the needs

of the wireless device on which it is running, or global, meaning that it accounts for the needs

of other devices on the network. Global strategies seem most appropriate considering that

the decisions one wireless unit makes about its transmission power and link bandwidth affect

the other wireless units. Local strategies have the advantage of being simpler to implement,

especially in a heterogeneous environment where communication between units in an attempt

to cooperate is difficult. Global strategies, however, need not require global communication;

estimates of the effect of power changes on interference with other units may be sufficient.

One suggested local transition strategy is to choose transmission power at each
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moment based on the current quality of service required and the current interference level

observed, using a function analytically selected to optimize battery lifetime. Simulations

show that such an approach can yield significant energy savings and no reduction in quality

of service compared to other schemes that do not consider battery lifetime, such as one that

attempts to always maintain a certain signal to noise ratio. The amount of energy savings

obtained decreases with increasing quality of service required, since more required activity

means less opportunity to reduce transmission power and save energy [RB96].

The developers of that strategy also considered a global variant of it, in which each

mobile unit also considers the interference levels it has observed in the past when making its

decisions about transmission power [RB96]. In this scheme, the only communication between

mobile units is indirect, via the noise they generate for each other with their transmissions.

Using such indirect communication makes implementation simpler, since it requires no pro-

tocol for explicit communication of control information. However, it does not allow the units

to make intelligent distributed decisions, such as to use time-division multiple access, i.e.,

to take turns transmitting, so as to minimize interference and maximize use of cell capacity.

Nevertheless, simulations indicate that even without explicit communication the strategy

seems to achieve reasonable global behavior. One reason for this may be that when devices

act independently to reduce their power levels when interference makes transmission un-

worthwhile, the machines will tend somewhat to take turns in transmitting. This is similar

to back-off strategies in Ethernet.

Other global strategies can be imagined that use explicit communication of such

things as quality of service needs and transmission power schedules. Such explicit commu-

nication would allow mobile units to coordinate their transmission power in an attempt to

optimize overall battery lifetime given reasonable overall goals for quality of service and cell

capacity.

II.5.5 Load-change strategies when transmission power can change

When a wireless device transmits with reduced power, its bit error rate increases.

Load-change strategies can be used to mitigate the effect of this increased bit error rate and

thus enable the use of less transmission power. One way to do this is to use more error
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correction code bits, although this has the side effect of reducing effective data bandwidth

by consuming extra bandwidth for the additional code bits. Another way is to request

more link bandwidth, to counter the effects of increased error correction and more frequent

retransmission of dropped packets.

So, a strategy for modifying transmission power can be made more effective by si-

multaneously effecting changes in the amount of error correction and link bandwidth used.

For instance, suppose the needed quality of service can be attained by transmitting with

power P1, using error correction method E1, and consuming bandwidth B1, or by transmit-

ting with power P2, using error correction method E2, and consuming bandwidth B2. Then,

the strategy can choose among these two combined options based on how they will influence

battery lifetime and cell capacity.

Some researchers have suggested a global strategy that allows mobile units in a

network to optimize overall system utility by coordinating which units will be transmitting

when, what transmission power each unit will use, and how much error correction each

unit will use [LB96]. They considered only bit error rate and bandwidth seen by each

user application in determining system utility, but their model could be adapted to take

battery lifetime into account as well. Their system uses explicit communication, but uses

a hierarchically distributed algorithm to reduce the complexity, control message bandwidth,

and time required to perform the optimization.

II.6 Display and Backlight

II.6.1 Hardware features

The display and backlight have few energy-saving features. This is unfortunate,

since they consume a great deal of power in their maximum-power states; for instance, on

the Duo 280c, the display consumes a maximum of 0.75 W and the backlight consumes a

maximum of 3.40 W [Lor95a]. The backlight can have its power reduced by reducing the

brightness level or by turning it off, since its power consumption is roughly proportional to the

luminance delivered [HDP+95]. The display power consumption can be reduced by turning

the display off. It can also be reduced slightly by switching from color to monochrome or by
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reducing the update frequency. Reducing the update frequency reduces the range of colors or

shades of gray for each pixel, since such shading is done by electrically selecting each pixel for

a particular fraction of its duty cycle. Generally, the only disadvantage of these low-power

modes is reduced readability. However, in the case of switches among update frequencies and

switches between color and monochrome, the transitions can also cause annoying flashes.

II.6.2 Transition strategies

Essentially the only transition strategy currently used to take advantage of these

low-power features is to turn off or down the backlight and display after a certain period of

time has passed with no user input. The reasoning behind this strategy is that if the user

has not performed any input recently, then it is likely he or she is no longer looking at the

screen, and thus the reduced readability of a low-power mode is acceptable for the immediate

future. To lessen the effect of a wrong guess about such inactivity on the part of the user,

some machines do not shut the backlight off immediately but rather make it progressively

dimmer. In this way, if the user is actually still looking at the screen, he or she gets a chance

to indicate his or her presence before the entire screen becomes unreadable. One study found

that thanks to the use of low-power states, the backlights on some machines consumed only

32–67% of maximum possible energy while running on battery power [Lor95a].

A possible modification of this standard strategy is to automatically readjust the

inactivity threshold to make it a better predictor of user inactivity. For example, if the user

hits a key just as the backlight begins to dim, such a strategy might increase the inactivity

threshold on the assumption that its current value is too short.

Another possible transition strategy is to switch the display to monochrome when

color is not being displayed, or to switch it to a lower update frequency when the items

displayed do not require a high update frequency. The operating system might even switch

to a lower-power display mode when those parts of the screen making use of the current

display mode are not visually important to the user. For example, if the only color used on

the screen were in a window belonging to an application not recently used, the operating

system might switch the display to monochrome. The use of such features would be most

acceptable if such transitions could be made unobtrusive, e.g., without a flash, and perhaps
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even with progressive fading.

Other transition strategies become feasible when additional hardware is present on

the machine. For example, if a device can detect when the user is looking at the screen,

the system can turn off the display and backlight at all other times. Such a device might

consist of a light emitter and receiver on the machine and a reflector on the forehead of the

(unusually docile) user. Or, it might be similar to those used by some video cameras that

focus by watching where the user is looking. If a sensing device can determine the ambient

light level, the system can dim the backlight when ambient light is sufficiently bright to see

by [Soh95].

II.6.3 Load-change strategies

Currently, there are no formal load-change strategies for reducing the energy con-

sumption of the display or backlight. However, it has been suggested that using a light virtual

desktop pattern rather than a dark one can reduce the load on the backlight. This happens

because lighter colors make the screen seem brighter and thus encourage users to use lower

default backlight levels [Kut95]. Furthermore, since most LCD’s are “normally white,” i.e.,

their pixels are white when unselected and dark when selected [Wer94], the display of light

colors consumes marginally less power than the display of dark colors. A similar strategy

would be for the operating system or an application to decrease the resolution of a screen

image by only illuminating a certain fraction of its pixels.

II.6.4 Future hardware innovations

Researchers working on technological advances in display and backlight hardware

have many opportunities to make software power management of these components more

effective. Switching to low-power modes could be made unobtrusive. If an ambient light

sensor were available, the operating system could automatically reduce the backlight level

when ambient light brightened. Finally, as for all other components mentioned in this chap-

ter, designers of display and backlight hardware should seek to include as many low-power

modes as possible that provide reduced but reasonable levels of functionality.
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II.7 Other Components

II.7.1 Main memory

Main memory is generally implemented using DRAM with three modes: active,

standby, and off. In active mode, the chip is reading or writing; in standby, it is neither

reading nor writing but is maintaining data by periodically refreshing it. As an example of

the power consumption in these states, 256 Mb of SDRAM memory from Micron consumes

about 6.6 mW in standby mode, 198 mW in active mode with all banks idle, and 545 mW

in active mode while being accessed [Mic01]. The only transition strategy currently used

to reduce memory energy makes use of the off state: when it is determined that the entire

system will be idle for a significant period of time, all of main memory is saved to disk

and the memory system is turned off. The memory contents are restored when the system

is no longer idle. When memory is saved in this manner, the machine state is said to be

suspended ; restoring memory is called resuming. Load-change strategies for saving memory

power have been discussed before in the context of load-change strategies for saving processor

power: they included using energy-aware compilers and using compact and efficient operating

system code. Such strategies reduce the load on the memory system by making application

and system code more compact and efficient, thus permitting greater use of the standby

state. They may also convince the user to purchase a machine with less main memory, thus

reducing the energy consumption of the memory system.

In future machines, memory may be divided into banks, with each bank able to turn

on and off independently. Such capability broadens the ability of the operating system to

manage memory energy. At times when the memory working set could fit in a small amount

of memory, unused memory could be turned off. If the contents of a bank of memory were

not expected to be used for a long time, they could even be saved to disk. Note that the

expected period of idle time would have to be large to make up for the significant energy

and time consumed in saving and restoring such memory. A related approach would be to

compress, using standard data compression methods, the contents of memory, and turn off

the unused banks; memory contents could be uncompressed either as needed or when activity

resumed.
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II.7.2 Modem

A modem can be transmitting, receiving, idle, or off. Some modems provide another

state with power consumption between idle and off, called wake-on-ring; in this state, the

modem consumes just enough power to detect an incoming call. MacOS uses no power saving

strategies for the modem, relying on the user or an application to turn the modem on and

off explicitly [Lor95a]. Presumably, this is because the operating system has no idea when

data will arrive at the modem, and needs to make sure the modem is enabled whenever such

data arrives so that it is not lost. A better strategy would be to have the operating system,

or even the modem itself, switch the modem to the off or wake-on-ring state whenever there

is no active connection to the modem.

II.7.3 Sound system

The sound system is another miscellaneous consumer of energy that can be active,

idle, or off. MacOS uses an inactivity timer to decide when to turn the sound card off [Lor95a].

Another possibility is to turn the sound card off whenever a sound request from an application

that triggered it turning on is completed; this has the disadvantage of increasing sound

emission latency when one sound closely follows another.

II.8 Overall Strategies

It is possible to energy manage the entire computer as if it were a single component.

When the computer is unneeded now and probably for some time, the operating system may

put the entire system in a low-power state. Just how low-power a state depends on how

long the system is expected to be idle since, in general, the lower the power of the state, the

greater the time to return the system to full functionality.

Transition strategies for entering low-power system states generally use inactivity

thresholds. If the user and all processes have been idle for some set period of time, the

next lower system state is entered. APM 1.1 [IM93], a standard for energy management in

computers, allows this decision-making process to be enhanced in at least two ways. First,

the user may be allowed to make an explicit request to switch to a lower-power system state.
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Second, certain applications may be consulted before making a transition to a lower-power

system state, so they can reject the request or make internal preparations for entering such

a state.

Several low-power system states can be devised, and some examples of these are

defined in APM 1.1. In the APM standby state, most devices are in a low-power state but

can return to their full-power states quickly. For example, the disk is spun down and the

backlight is off. In the APM suspend state, all devices are in very low-power states and take

a relatively long time to return to functionality. For instance, the contents of memory are

saved to disk and main memory is turned off. In the APM off state, the entire machine is

off; in particular, all memory contents are lost and a possibly long boot period is needed to

return to functionality.

Note that the sequence with which low power states are entered is significant. For

example, if the memory is copied to the disk before the disk is spun down, then the machine,

or at least the memory, can be shut down without spinning up the disk to establish a

checkpoint.

There are both a disadvantage and an advantage to energy managing the system as

a whole instead of separately managing each component. The disadvantage is that it requires

all components’ energy management be synchronized. Thus, if one component is still active,

some other inactive component may not get turned off. Also, if it takes microseconds to

determine the idleness of one component but seconds to determine the idleness of another,

the first component will not be energy-managed as efficiently as possible. The advantage

of treating the system as a single component is simplicity. It is simpler for the operating

system to make a single prediction about the viability of entering a system state than to make

separate predictions for each component state. It is simpler for an application to give hints to

the operating system about when state transitions are reasonable, and to accept and reject

requests by the operating system to make such transitions. Also, it is simpler for the user, if

he or she is called upon to make energy management decisions, to understand and handle a

few system state transitions than to understand and handle an array of individual component

transitions. For these reasons, an operating system will typically do both component-level

and system-level energy management. For example, APM 1.1 has a system state called

enabled, in which individual component energy management is performed. After extended
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periods of idleness, when most components can be managed uniformly, different low-power

system states can be entered.

II.9 Conclusions

Computer hardware components often have low-power modes. These hardware

modes raise software issues of three types: transition, load-change, and adaptation. Several

solutions to these issues have been implemented in real portable computers, others have

been suggested by researchers, and many others have not yet been developed. Generally,

each solution targets the energy consumption of one component.

The disk system has been the focus of many software solutions. Currently, the main

hardware power-saving feature is the ability to turn the motor off by entering sleep mode.

The main existing software solutions consist of entering sleep mode after a fixed period of

inactivity and caching disk requests to reduce the frequency with which the disk must be

spun up. Other technologies may improve the energy consumption of the storage system

further, but present new challenges in file system management. These technologies include

flash memory, which can function either as a secondary storage cache or a secondary storage

unit, and wireless communication, which can make remote disks appear local to a portable

computer.

New low-power modes for the CPU also present software challenges. Currently, the

main hardware energy-saving feature is the ability to turn the CPU off, and the main existing

software solution is to turn the CPU off when all processes are blocked. Other software

strategies include using energy-aware compilers, using compact and efficient operating system

code, and forcing processes to block when they appear to be busy-waiting. An energy-saving

feature that is increasingly appearing in portable computers is the ability to reduce the

processor voltage by simultaneously reducing the clock speed. Initial proposed solutions

that take advantage of this feature were interval-based, attempting to complete all processor

work by the end of each interval. However, there are effective deadline-based solutions as

well.

The wireless communication device is appearing with increasing frequency in

portable computers, and is thus an important recent focus of software energy management
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research. Commonly, the device is put in sleep mode when no data needs to be transmitted

or received. To make this happen often, various techniques can be used to reduce the amount

of time a device needs to be transmitting or receiving, including the adoption of protocols

that let devices know in advance when they can be assured of no incoming data. Some new

devices have the ability to dynamically change their transmission power; given this, a device

needs a strategy to continually decide what power level is appropriate given quality of service

requirements, interference level, and needs of neighboring units.

The display unit, including the backlight, typically consumes more power than any

other component, so energy management is especially important for it. Power-saving modes

available include dimming the backlight, turning the display and/or backlight off, switching

from color to monochrome, and reducing the update frequency. Current system strategies

only take advantage of the former two abilities, dimming the backlight and eventually turn-

ing off the display unit after a fixed period of inactivity. Other software strategies can be

envisioned, especially if future hardware makes transitions to other low-power modes less

obtrusive.

Other components for which software power management is possible include main

memory, the modem, and the sound system. It is also possible to power manage the entire

system as if it were a single component, bringing all components simultaneously to a low-

power state when general inactivity is detected. Such system-level power management is

simple to implement and allows simple communication with applications and users about

power management; however, it should not completely supplant individual component power

management because it requires synchronization of all components’ power management.

To conclude, there are a few things we believe developers of future solutions to

computer energy reduction should keep in mind.

1. A hardware feature is rarely a complete solution to an energy consumption problem,

since software modification is generally needed to make best use of it.

2. Energy consumption can be reduced not only by reducing the power consumption of

components, but also by introducing lower-power, lower-functionality modes for those

components and permitting external control over transitions between those modes.

3. Standard operating system elements may need to be redesigned when dealing with low-
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power components that have different performance characteristics than the components

they replace.

4. On a portable computer, the main goal of a component energy management strat-

egy is to increase the amount of work the entire system can perform on one battery

charge; thus, evaluation of such a strategy requires knowledge of how much energy each

component consumes.

5. Evaluation of a power management strategy should take into account not only how

much energy it saves, but also whether the trade-off it makes between energy savings

and performance is desirable for users.

6. Seemingly independent energy management strategies can interact.
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Chapter III

Improving CPU Sleep Mode Use

III.1 Introduction

In earlier work not presented in this dissertation, we analyzed the power consump-

tion of various Macintosh PowerBook computers in typical use by a number of engineering

users [Lor95a]. We found that, depending on the machine and user, up to 18–34% of total

power was attributable to components whose power consumption could be reduced by power

management of the processor, i.e., the CPU and logic that could be turned off when the

CPU was inactive. This high percentage, combined with our intuition that software power

management could be significantly improved for the processor, led us to conclude that the

most important target for further research in software power management was the processor.

Many modern microprocessors have low-power states, in which they consume lit-

tle or no power. To take advantage of such low-power states, the operating system needs

to direct the processor to turn off (or down) when it is predicted that the consequent sav-

ings in power will be worth the time and energy overhead of turning off and restarting.

In this way, the goal of processor power management strategies is similar to that of hard

disks [DKM94b, LKHA94]. Some strategies for making these predictions are described by

Srivastava et al. [SCB96]. Unlike disks, however, the delay and energy cost for a modern

microprocessor to enter and return from a low-power mode are typically low. For instance,

Intel’s Mobile Pentium III requires only ten system clocks to return from the Auto Halt state
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to the Normal state [Int01]. Even back in 1996, the AT&T Hobbit and certain versions of

the MC68030 and MC68040 used static logic so that most of their state could be retained

when the clock is shut down [SCB96]; also, the PowerPC 603 could exit the low-power Doze

mode in about ten system clocks [GDE+94].

Because of the short delay and low energy cost for entering and leaving a low-power

state, the optimal CPU power management strategy is trivial: turn off the CPU whenever

there is no useful work to do. An opportunity for such a strategy is described by Srivastava

et al. [SCB96], who point out that the process scheduling of modern window-based operating

systems is event-driven, i.e., that the responsibility of processes in such systems is to process

events such as mouse clicks when they occur and then to block until another such event is

ready. In this type of environment, the most appropriate strategy is to shut off the processor

when all processes are blocked, and to turn the processor back on when an external event

occurs. An essentially equivalent version of this strategy, namely to establish a virtual

lowest-priority process whose job is to turn off the processor when it runs, is recommended

by Suessmith and Paap [SI94] for the PowerPC 603, and by Suzuki and Uno [SU93] in a 1993

patent. Such a virtual lowest-priority process has in the past been called the “idle loop,”

and in mainframes typically lighted a bulb on the console.

III.1.1 Why it isn’t trivial

We refer to the strategy of turning off the processor when no process is available

to run the basic strategy. Unfortunately, in Apple’s MacOS 7.5, processes can run or be

scheduled to run even when they have no useful work to do. This feature is partially by

design, since in a single-user system there is less need for the operating system to act as

an arbiter of resource use [RDH+80]. Partially, it is because the OS was not written with

power management in mind. Partially, it is because MacOS 7.5, like other personal computer

operating systems (e.g., those from Microsoft), is based on code originally developed for 8-

and 16-bit non-portable machines, for which development time and code compactness were

far more important goals than clean design or faithfulness to OS design principles as described

in textbooks.

There are two main problems with the management of processor time by computers
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running MacOS 7.5, one having to do with the system and one having to do with applications.

The first problem is that the operating system will sometimes schedule a process even though

it has no work to do. We were first made aware of this phenomenon when we studied traces

of MacOS process scheduling calls, and found that often a process would be scheduled to

run before the conditions the process had established as necessary for it to be ready were

fulfilled. It seems that often, when there are no ready processes, the OS picks one to run

anyway, usually the process associated with the active window. The second problem is that

programmers writing applications generally assume that when their application is running

in the foreground, it is justified in taking as much processing time as it wants. First, a

process will often request processor time even when it has nothing to do. We discovered this

problem in MacOS 7.5 when we discovered periods of as long as ten minutes during which a

process never did anything, yet never blocked; we describe later what we mean by “never did

anything.” Second, when a process decides to block, it often requests a shorter sleep period

than necessary. Solutions to both these problems seem to be necessary to obtain the most

savings from the basic strategy.

For this reason, we have developed additional techniques for process management.

Our technique for dealing with the first problem is to simply make the operating system never

schedule a process when it has requested to be blocked; we call this the simple scheduling

technique. Dealing with the second problem is more difficult, since the determination of when

a process is actually doing something useful is difficult. One technique we suggest is to use a

heuristic to decide when a process is making unnecessary requests for processor time and to

forcibly block any such process. Another technique we suggest is that all sleep times requested

by processes be multiplied by a constant factor, chosen by the user or operating system,

to ensure that a reasonable trade-off between energy savings and performance is obtained.

We call these latter two techniques the greediness technique and sleep extension technique,

respectively. We will show how using these techniques can improve the effectiveness of the

basic strategy, allowing it to far surpass the effectiveness of the MacOS 7.5 inactivity-timer

based strategy. Each of these is described in more detail below.

In this chapter, we evaluate these different strategies, over a variety of parameter

values, using trace-driven simulation. These simulations enable us to compare these algo-

rithms to the MacOS 7.5 strategy, and to optimize their parameters. A comparison between
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two strategies is based on two consequences of each strategy: how much processor power it

saves and how much it decreases observed performance.

The chapter is structured as follows. In Section III.2, we give background on pro-

cessor power consumption and operating systems, including a description of the processor

power management strategies used in MacOS 7.5 and other contemporary operating systems.

In Section III.3, we describe our suggested process management techniques for improving the

basic strategy: (a) do not schedule blocked processes, (b) extend the time processes spend

sleeping, and (c) detect processes that appear to be busy-waiting and forcibly block them.

In Section III.4, we describe the methodology we used to evaluate these strategies: the eval-

uation criteria, the tools we used for the trace-driven simulation, and the nature of the traces

we collected. In Section III.5, we present the results of our simulations, showing that our

techniques save 47–66% of processor energy. In Section III.6, we discuss the meaning and

consequences of these results. Finally, Section III.7 concludes the chapter.

III.2 Background

III.2.1 Power consumption breakdown of portables

When discussing the effectiveness of techniques for reducing the power consump-

tion of a component, the most important number to know is the percentage of total power

consumption attributable to that component. Furthermore, it is not good to know this

percentage when all components are in their high-power state, since this is not a realistic

description of the typical state of a laptop. We must determine the percent of total power

consumption attributable to that component when power-saving features are in use for all

other components; these power-saving features generally increase the percentage by reflecting

reduced use of other components.

We must also be careful about percentage due to a component when the power state

of that component influences the power consumption of other components. For instance, in a

previous study we found that shutting down the processor in Apple laptops reduces power by

more than the power consumption of the processor itself, indicating that some components

on the motherboard have their power reduced when the processor power is reduced. So, when
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we speak of percentage of total energy consumption due to the processor, we include energy

consumption of other components that can be reduced by reducing the time the processor is

on.

A previous study [Lor95a] showed that, for the workloads studied, the further power

consumption that could be saved by making more use of the low-power state of the processor

on Apple laptops ranged from 18–34% for the machines studied. Note that these figures take

into account power savings attained in real working environments for the processor and all

other components. Li et al. estimate the percent of power consumption attributable to the

processor of a “typical” computer to be 12% [LKHA94].

III.2.2 The Macintosh operating system

The Macintosh operating system uses cooperative multitasking to allocate process-

ing time among all running applications and device drivers. This means that for multiple

applications to run concurrently, each application must, periodically, voluntarily give up con-

trol of the system so that another application can run. If an application decides to give up

control while it still has work to do, it can request that control be returned to it after a

certain period of time has passed. Otherwise, control will be returned to it whenever an

event such as a mouse click is available for it to process.

However, there are two problems with this rosy picture of the operating system.

First, the voluntary nature of this protocol invites abuse on the part of applications, and

many applications accept this invitation by requesting control returned to them sooner than

they need that control. Second, for various low-level reasons, the operating system sometimes

violates the application-level interface by returning control to applications much sooner than

they need control returned to them. Years of this practice may have caused applications to

err in the opposite direction, asking for too much time before control is returned to them, in

the knowledge that the operating system will probably return control earlier.

Because of these problems, the amount of processing time requested by applications

does not necessarily reflect their actual processing needs. Therefore, the MacOS 7.5 operating

system does not make use of such information provided by applications in deciding when it

is appropriate to turn off the processor. Instead, it uses an inactivity timer. The strategy
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it uses, which we will call the current strategy, initiates processor power reduction whenever

no activity has occurred in the last two seconds and no I/O activity has occurred in the last

15 seconds. Power reduction is halted whenever activity is once again detected. Activity

is defined here and in later contexts as any user input, any I/O device read or write, any

change in the appearance of the cursor, or any time spent with the cursor as a watch. The

reason for the classification of these latter two as activity is that MacOS human interface

guidelines specify that a process that is actively computing must indicate this to the user by

having the cursor appear as a watch or by frequently changing the appearance of the cursor,

e.g., by making a “color wheel” spin.

Another reason the MacOS 7.5 operating system uses user inactivity is that when

it was designed, Macintosh computers had high overhead associated with turning off and on

the processor, making the basic strategy less applicable. In older processors, for example, the

contents of on-chip caches were lost when the processor was powered down. Another reason

is that, as we have described before and will see later, the effectiveness of the basic strategy

is not very different from that of the inactivity timer based strategy, given the MacOS 7.5

method of process time management.

We feel that, despite the limitations of the information about application processing

time needs, this information is far more valuable in determining when to turn the processor

off than user inactivity levels. Thus, we suggest a heuristic for converting the imperfect

information about processing needs into more useful information, and making use of this

instead to decide when to turn off the processor.

III.2.3 Other operating systems

The Windows 3.1 operating system also uses cooperative multitasking, and its mech-

anism for permitting this is similar to that of the Macintosh operating system. However,

some subtle differences allow the system greater confidence in assessing the true processing

needs of the applications. First, the standard interface for giving up control does not allow

the application to specify a time after which control should be returned. The default behav-

ior is that control will not be returned until an event is ready; if control is needed earlier than

that, it is up to the application to explicitly arrange for a timer event to occur when it is
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needed. This extra programming effort seems to be sufficient for ensuring that applications

seldom have control returned to them before it is needed. Second, the fact that control is

returned without an event occurring only when timers go off eliminates the problem of the

operating system returning control too soon.

Thus, the processor power saving technique used in Windows 3.1 is to have the

system idle loop, that part of the system that gets executed when all applications have

given up control and there are no events waiting for them, send a message to the power

management system indicating that the CPU is idle. In this way, the power management

system can immediately turn off the CPU or at least reduce its power consumption by

reducing its clock rate. We call this strategy, which turns off the CPU whenever all processes

are blocked, the basic strategy.

We feel that the fine-grain control over processor-off times this affords yields great

power savings compared to the long delays associated with waiting for the sluggish user to

stop being active.

III.3 Strategy Improvement Techniques

In this section, we describe three techniques for improving processor energy man-

agement in MacOS 7.5 when the basic strategy is used. These techniques should allow the

basic strategy to equal and even surpass the current strategy in terms of power savings by

changing operating system behavior.

III.3.1 The simple scheduling technique

The simple scheduling technique is to not schedule a process until the condition

under which it has indicated it will be ready to run has been met. In MacOS 7.5, this

condition is always explicitly indicated by the process, and is always of the form, “any of the

event types e1, e2, . . . has occurred, or a period of time t has passed since the process last

yielded control of the processor.” (In modern Windows operating systems, this is indicated

by a call to the common API function MsgWaitForMultipleObjects.) The period of time

for which the process is willing to wait in the absence of events before being scheduled is
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referred to as the sleep period.

Note that, in some other operating systems, such as UNIX or Microsoft Windows,

the simple scheduling technique is not needed, since it is the default behavior of the operating

system.

III.3.2 The sleep extension technique

Using only the simple scheduling technique described above means that a process

is given control of the processor whenever it wants it (unless the CPU is otherwise busy).

For example, if it asks to be unblocked every 1 second, it is unblocked every 1 second, even

if all it wants to do is blink the cursor, a common occurrence. Since MacOS 7.5 is not a real

time system, a real time sleep period does not actually have to be honored. In fact, in the

MacOS 7.5 power management strategy, with power management enabled, the cursor may

blink much more slowly than it would without power management. If this kind of behavior

is acceptable, it is possible to increase the effectiveness of the simple scheduling technique by

using what we call the sleep extension technique. This technique specifies a sleep multiplier,

a number greater than one by which all sleep periods are multiplied, thus eliminating some

fraction of the process run intervals. We envision that the sleep multiplier can be set, either

by the user or by the operating system, so as to maximize energy savings, given a certain level

of performance desired. We note that sleep extension may negatively impact performance,

or even functionality, since not all delays will be as inconsequential as a cursor which blinks

less frequently.

III.3.3 The greediness technique

The greediness technique is, in overview, to identify and block processes that are

not doing useful work. First, we will describe the technique in general terms, and then we

will indicate the details of its implementation for MacOS 7.5.

The technique is based on the following model of the appropriate way a process

should operate in an event-driven environment. A process, upon receiving an event, should

process that event, blocking when and only when it has finished that processing. Once

blocked, it should be scheduled again when and only when another event is ready to be
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processed; an exception is that the process may want to be scheduled periodically to perform

periodic tasks, such as blinking the cursor or checking whether it is time to do backups. We

say that a process is acting greedily when it fails to block even after it has finished processing

an event. This can occur when a process busy-waits in some manner, e.g., it loops on “check

for event.” When we determine a process is acting greedily, we will forcibly block that process

for a set period of time.

MacOS 7.5 uses cooperative multitasking, meaning that once a process gets control

of the processor, it retains that control until it chooses to yield control. For this reason,

application writers are strongly encouraged to have their processes yield control periodically,

even when they still have work to do. Processes indicate that they still have work to do by

specifying a sleep period of zero, thereby failing to block. We call the period of time between

when a process gains control of the processor and when it yields control a quantum.

Part of our technique is a heuristic to determine when a process is acting greedily.

We say that a process is acting greedily when it specifies a sleep period of zero even though it

seems not to be actively computing. We consider a process to start actively computing when

it receives an event or shows some signs of “activity,” as defined below. We estimate that a

process is no longer actively computing if it explicitly blocks, or if it yields control several

times in a row without receiving an event or showing signs of activity. The exact number of

control-yield times, which we call the greediness threshold, is a parameter of the technique;

we expect it to be set so as to maximize energy savings, given a desired level of performance.

We say that a process shows no sign of activity if it performs no I/O device read or write,

does not have the sound chip on, does not change the appearance of the cursor, and does

not have the cursor appear as a watch. The absence of activity as we have so defined it

implies that either the CPU is idle, the process running is busy-waiting in some manner, or

the process running is violating the MacOS human interface guidelines that we mentioned

earlier.

The greediness technique works as follows. When the OS determines that a process

is acting greedily as defined above, it blocks it for a fixed period called the forced sleep period.

The forced sleep period is a parameter to be optimized, with the following tradeoff: a short

sleep period saves insufficient power, while a long sleep period may, in the case that our

heuristic fails, block a process that is actually doing something useful.
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III.4 Methodology

III.4.1 Evaluation of strategies

Evaluation of a strategy requires measuring two consequences of that strategy:

processor energy savings and performance impact. Processor energy savings is easy to deduce

from a simulation, since it is essentially the percent decrease in the time the processor spends

in the high-power state. In contrast, performance impact, by which we mean the percent

increase in workload runtime as a result of using a power-saving strategy, is difficult to

measure. This performance penalty stems from the fact that a power saving strategy will

sometimes cause the processor not to run when it would otherwise be performing useful work.

Such work will wind up having to be scheduled later, making the workload take longer to

complete. Without detailed knowledge of the purpose of instruction sequences, it is difficult

for a tracer to accurately determine what work is useful and what is not, so our measure will

necessarily be inexact.

We have decided to use the same heuristic used in the greediness technique to

determine when the processor is doing useful work. In other words, we will call a quantum

useful if, during that quantum, there is any I/O device read or write, the sound chip is on,

there is any change to the cursor, or the cursor appears as a watch. It might be objected that

using the same heuristic in the evaluation of a strategy as is used by that strategy is invalid.

However, remember that a strategy does not have prior knowledge of when a quantum will

be useful, whereas the evaluation system does. Thus, we are evaluating the accuracy of our

guess that a quantum will be useful or useless.

We must also account for the time not spent inside application code in the original

trace. We divide this time into time spent switching processes in and out (context switching),

time the OS spent doing useful work, and OS idle time. The OS is considered to be doing

useful work whenever it shows signs of activity that would cause a process quantum to

be labeled useful. Such useful work is scheduled in the simulations immediately after the

quantum that it originally followed is scheduled, on the assumption that most significant

OS work is necessitated by the actions of the process that just ran. Idle time is identified

whenever no process is running and the operating system is not doing useful work for a

continuous period over 16 ms. We chose this threshold for two reasons. First, it is the
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smallest time unit used for process scheduling by MacOS 7.5, so we expect any decision to

idle to result in at least this much idleness. Second, 16 ms is much greater than the modal

(most common) value of interprocess time, indicating that it is far longer than should ever be

needed to merely switch between processes. Finally, context switch time is assumed to occur

any time a process switches in but did not just switch out; context switches are considered

to take 0.681 ms, the observed difference between the average interprocess time when no

context switch occurs and the average interprocess time when one does occur.

In the simulations, all time spent processor cycling is multiplied by 0.976, to model

the fact that about 2.4% of total time is spent servicing VBL interrupts, during which time

no processor cycling is possible.

III.4.2 Tools

We used three tools to measure the effectiveness of our processor energy manage-

ment strategies. The first, IdleTracer, collects traces of relevant events from real environ-

ments. The second, ItmSim, uses these traces to drive simulations of the current strategy,

i.e., the strategy of using an inactivity threshold, to determine how much time would have

been spent processor cycling if that method had been used. The third, AsmSim, works anal-

ogously for the basic strategy, allowing us to simulate the basic strategy by itself as well as

augmented with the techniques we recommend.

III.4.2.1 IdleTracer

IdleTracer collects traces of events related to processor and user activity in real envi-

ronments. Thus, each log file created by IdleTracer contains a list of everything relevant that

happened during the period measured, along with when those things happened. IdleTracer

only collects data while the machine it is tracing is running on battery power, since that is

when processor cycling is most important, and we want our analysis to reflect the appropriate

workload. While it is tracing, IdleTracer turns processor power management off, so that the

trace obtained is independent of the processor cycling technique currently used and thus can

be used to simulate any strategy. IdleTracer makes use of the SETC [Soh94] module, a set

of routines for tracing and counting system events. The types of events IdleTracer collects
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are as follows:

• Tracing begins or ends

• Machine goes to or wakes from sleep

• Application begins or ends

• Sound chip is turned on or off

• Cursor changes, either to a watch cursor or to a non-watch cursor

• An event is posted

• Mouse starts or stops moving

• Disk is read or written, either at a file level or a driver level

• Control is returned to an application

• Control is given up by an application

III.4.3 ItmSim

The types of events recorded by IdleTracer include those events used by the current

inactivity threshold method for processor cycling to determine when activity precluding

processor cycling is occurring. Thus, it is straightforward to use IdleTracer traces to drive

simulations of that technique of processor cycling. The program that does this is ItmSim, so

named because it simulates the inactivity threshold method.

The simulator works as follows. It determines, from the traces, when the processor

would turn off due to the inactivity threshold. When, later in the simulation, the processor

comes back on due to some activity, any quanta in the original trace that preceded that

activity but have not yet been scheduled are divided into two categories: useful and non-

useful. Useful quanta are immediately scheduled, delaying the rest of the trace execution

and thus contributing to the performance impact measure. Non-useful quanta are discarded

and never scheduled. Any useful OS time associated with these quanta is also immediately

scheduled, contributing to the performance impact measure.
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One wrinkle in simulating the current strategy is that during periods that the

processor is supposed to be off, MacOS 7.5 will occasionally turn the processor on for long

enough to schedule a process quantum. This is done to give processes a chance to demonstrate

some activity and put an end to processor power management, in case the processor was shut

off too soon. The details of how process quanta are scheduled while the processor is supposed

to be off is proprietary and thus is not described here; however, ItmSim does attempt to

simulate this aspect of the strategy. To give an idea of the consequences of this proprietary

modification, our simulations showed that for the aggregate workload we studied, it decreased

the performance impact measure from 1.93% to 1.84%, at the expense of decreasing processor

off time from 29.77% to 28.79%. This particular proprietary modification, therefore, has only

a trivial effect on the power savings.

ItmSim has several parameters that the user can modify to alter its behavior and

model slightly different situations or techniques. One parameter allows the typical inactivity

threshold to be modified from its default of two seconds. Another allows the I/O inactivity

threshold to be modified from its default of 15 seconds. Finally, the factor of 0.976 that takes

into account time spent processing VBL tasks can be changed with a parameter.

III.4.4 AsmSim

The third tool, AsmSim, uses traces produced by IdleTracer to drive a simulation

of using the simple scheduling technique on a hypothetical machine. It can simulate using

zero or more of our two other suggested techniques: sleep extension and greediness. The

parameters for these techniques may be varied at will in the simulations. When, in the

simulation, an event becomes ready for a process, all quanta of that process preceding the

receipt of the ready event that have not yet been scheduled will be treated as described

above, i.e., all useful quanta will be run immediately (before the power-up event), all useless

quanta will be discarded, and any useful OS time associated with such quanta will also be

run immediately. Even for periodic processes, we schedule quanta in the order in which they

occurred. For example, if after its quantum i a process originally slept for 1 second but is

actually awoken after 4 seconds, then at that point we schedule quantum i + 1, not some

later quantum. Note that this approach may cause inaccuracies in the simulation, since
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User number 1 2 3 4 5 6
Machine Duo 280c Duo 230 Duo 280c Duo 280c Duo 280c Duo 280c
MacOS version 7.5 7.5.1 7.5 7.5 7.5.1 7.5
RAM size 12 MB 12 MB 12 MB 12 MB 12 MB 12 MB
Hard disk size 320 MB 160 MB 320 MB 320 MB 320 MB 240 MB
Trace length

(hr:min:sec) 2:48:34 3:01:21 9:09:00 5:26:41 4:52:55 4:14:52

Table III.1: Information about the six users traced

the process might in reality check how long it has been since it last went to sleep, and act

differently seeing that 4 seconds have passed than it did when only 1 second had passed. We

expect and hope that such dependence of process action on time is rare enough that this

does not introduce significant errors into the results of our simulations.

After simulating events according to these conditions, AsmSim outputs how long

the trace would have taken, and how much of that time would have been spent processor

cycling, were the simulated strategy used. Note that it may take longer to execute the entire

trace under this technique than it originally took; AsmSim reports the percent increase in

total time compared to the length of the original trace.

III.4.5 Traces

We collected traces from six users, each an engineer at Apple Computer, Inc. (We

distributed IdleTracer to many users, but only six of them actually used it and returned

traces.) Table III.1 indicates data about the traces obtained from each user and the machines

on which those traces were collected. Most results we present will concern the aggregate

workload, i.e., the trace composed of the concatenation of all six of these traces.

III.5 Results

In this section, we refer to the Current MacOS 7.5 strategy as strategy C and the

Basic strategy as strategy B. We append the letter I to indicate use of the sImple schedule

technique, append the letter G to indicate use of the Greediness technique, and append
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Figure III.1: Performance impact measure versus processor energy savings for strategy BIS
with various sleep multipliers. Certain points are labeled with the sleep multipliers to which
they correspond.

the letter S for the S leep extension technique. Note that we never simulate the greediness

technique or sleep extension technique without the simple scheduling technique, since they

are designed as supplements to the simple scheduling technique.

III.5.1 Per-strategy results

The first thing we shall do is determine the optimal energy savings attainable. An

optimum strategy would schedule only time that was spent doing useful work, and would

entirely omit non-useful time; its performance impact would be zero, since it would have

foreknowledge of when useful work would occur and arrange to have the processor on when

it happens. Simulation indicates that such a strategy would yield an energy savings of 82.33%;

thus, this is an absolute ceiling on what can be obtained by any realizable strategy. This

is a remarkably high figure—what it says is that the processor is doing useful computation

during only 17.67% of the 29.56 hours of the trace; the rest of the time is busy-waiting by a

user process or idling.

The second simulation results concern strategy C. We find from simulation that

strategy C yields an energy savings of 28.79% along with a performance impact measure
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of 1.84%. In other words, it causes the processor to consume only 71.21% of the energy it

would without a power-saving strategy, but increases overall workload completion time by

1.84%. The strategy increases processor energy consumption by 303% compared with the

optimal strategy, since it only recovers 35% of the real idle time. Note also that since only

17.67% of the CPU time is actually useful, the performance impact of 1.84% means that we

have misclassified 10% of the useful CPU time, and have had to run that work in a delayed

manner. Thus, the actual real time delay perceived by the user may not be 1.84%, but may

be closer to 10%, since the user waits for a reply only during periods of real, useful, work.

The next simulation results concern strategy B, which turns off the processor when

and only when there was idling in the original trace. Strategy B has an energy savings of

31.98% and a performance impact of 0%. Thus, we see that the basic strategy without any

new process management techniques saves slightly more energy than the current strategy,

and has no impact on performance. However, it causes the processor to consume 285% more

energy than under the optimal strategy, since it only recovers 39% of real idle time.

The next simulation results concern strategy BI. Strategy BI has an energy savings

of 47.10% and a performance impact of 1.08%. Thus, we see that strategy BI decreases

processor energy consumption by 26% and decreases workload completion time by 0.7%

compared to strategy C. Compared to the optimal strategy, it causes the processor to consume

199% more energy, since it only recovers 57% of real idle time.

The next simulation results concern strategy BIS. Figure III.1 shows the perfor-

mance versus energy savings graph for variations of this strategy using sleep multipliers

between 1 and 10. We see that the point at which this strategy has performance impact of

1.84%, equal to that of strategy C, corresponds to a sleep multiplier of 2.25 and a processor

energy savings of 51.72%. Thus, we see that, comparing strategies BIS and C on equal per-

formance grounds, strategy BIS decreases processor energy consumption by 32%. Increasing

the sleep multiplier to 10 saves 55.93% of the CPU energy, with a performance impact of

2.84%. Note, however, that the performance impact measure does not tell the whole story

in this case. Generally, a real time delay is used by some process that wakes up, checks

something, and if certain conditions are met, does something. A very large real time delay

in the wakeup period may mean that certain checks are not made in a timely manner; we

have ignored that issue here. In practice, sleep extension factors over some level, perhaps 3
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Figure III.2: Performance impact measure versus processor energy savings for strategy BIG
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is cautioned that nonzero origins are used in this figure to save space and yet have sufficient
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to 5, may not be desirable.

The next simulation results concern strategy BIG. Figure III.2 shows the perfor-

mance versus energy savings graph for variations of this strategy using greediness thresholds

between 20 and 80 and forced sleep periods between 0.025 seconds and 10 seconds. We find,

through extensive exploration of the parameter space, that the parameter settings giving

the best energy savings at the 1.84% performance impact level are a greediness threshold of

61 and a forced sleep period of 0.52 seconds. These parameters yield an energy savings of

66.18%. Thus, we see that, comparing strategies BIG and C on equal performance grounds,

strategy BIG reduces processor energy consumption by 53%. Compared to the optimal strat-

egy, it increases processor energy consumption by 91%, since it only saves 80% of real idle

time.

The next results we present concern strategy BIGS. Figure III.3 shows that, in the

realm we are interested in, a performance impact of 1.84%, increasing the sleep multiplier

always produces worse results than changing the greediness threshold and forced sleep period.

The energy savings attainable by increasing the sleep multiplier can be attained at a lower
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performance cost by instead decreasing the greediness threshold or by increasing the forced

sleep period. Thus, the best BIGS strategy is the BIG strategy, which does not make any

use of the sleep extension technique. The figure suggests that if we could tolerate a greater

performance impact, such as 2.7%, this would no longer be the case, and the best energy

savings for BIGS would be attained at a sleep multiplier above one. We conclude that for

some values of performance impact, it is useful to combine the greediness technique and

sleep extension technique, but for a performance impact of 1.84% it is useless to use the

sleep extension technique if the greediness technique is in use.

A summary of all the findings about the above strategies can be seen in Table III.2,

as well as the columns of Figure III.5 corresponding to users 1–6.

III.5.2 Sensitivity to parameter values

An important issue is the extent to which the parameters we chose are specific to

the workload studied, and whether they would be optimal or equally effective for some other

workload. Furthermore, it is unclear how effective the user or operating system could be at

dynamically tuning these parameters in the best way to achieve optimal energy savings at a

given level of performance. Thus, it is important to observe the sensitivity of the results we

obtained to the particular values of the parameters we chose.
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Strategy Processor power savings Performance impact
Optimal 82.33% 0.00%
C 28.79% 1.84%
B 31.89% 0.00%
BI 47.10% 1.08%
BIS 51.72% 1.84%
BIG 66.18% 1.84%

Table III.2: Simulation results for each strategy on the aggregate workload. Strategy BIS
achieves the same performance impact as strategy C by using a sleep multiplier of 2.25;
strategy BIG achieves this performance impact by using a greediness threshold of 61 and a
forced sleep period of 0.52 sec.

The graphs we showed that demonstrate the relationship between performance,

energy savings, and parameter values also demonstrate the reasonably low sensitivity of the

results to the parameter values. For instance, varying the forced sleep period threshold in

Figure III.2 across a wide range of values only causes the consequent energy savings to vary

between 59–67%. Varying the greediness threshold in Figure III.4 across another wide range

of values only causes the consequent energy savings to vary in the range 63–71%. Finally,

varying the sleep multiplier across a wide range, as in Figure III.1, only causes the consequent

energy savings to vary in the range 47–56%.

Another way to gauge the sensitivity of the results to the parameters is to evaluate

the effectiveness of the techniques on each of the six workloads corresponding to the users

studied. To show the effect of using parameters tuned to an aggregate workload on individual

users, Figure III.5 shows the processor energy savings that would have been attained by each

of the users given the strategies we have discussed. We see from this figure that strategy

BIG is always superior to strategy C, and that strategy BIS is superior to strategy C for all

users except user 2. And, even in this case, the fault seems to lie with the basic strategy

and simple scheduling technique rather than the sleep multiplier parameter, since user 2 is

also the only user for which the savings from C are much greater than those from strategies

B and BI. These figures suggest that even parameters not tuned for a specific workload still

yield str