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ABSTRACT
This paper presents Zero-Effort Payments (ZEP), a seam-
less mobile computing system designed to accept payments
with no effort on the customer’s part beyond a one-time
opt-in. With ZEP, customers need not present cards nor
operate smartphones to convey their identities. ZEP uses
three complementary identification technologies: face recog-
nition, proximate device detection, and human assistance. We
demonstrate that the combination of these technologies en-
ables ZEP to scale to the level needed by our deployments.

We designed and built ZEP, and demonstrated its usefulness
across two real-world deployments lasting five months of
continuous deployment, and serving 274 customers. The dif-
ferent nature of our deployments stressed different aspects of
our system. These challenges led to several system design
changes to improve scalability and fault-tolerance.
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INTRODUCTION
Although mobile computing has delivered on the promise of
computing everywhere, mobile devices are not only not invis-
ible, but they often require users’ undivided attention. The
alternative is one where computing everywhere is done in a
seamless manner, requiring zero effort from users. Although
still in its infancy, seamless mobile computing is starting to
emerge both in industry and the research community. One
example is mobile payments, where several companies [25,
19, 27] recently launched “hands-free” payments – to make a
purchase, a customer only needs to tell the cashier their name.
Another example is “smart” home appliances, such as robotic
vacuum cleaners [11] or learning thermostats [16], that infer
what schedules will likely minimize human inconvenience.

This paper presents a seamless mobile computing system,
called Zero-Effort Payments (ZEP). As the name suggests,
ZEP is a payment system in which mobile users pay with
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”zero-effort”. Upon approaching a cashier for payment, the
user is identified based on a combination of face recognition,
low-power wireless radios (e.g., BLE), and human assistance
(i.e., relying on the cashier’s input to confirm the user).

To the best of our knowledge, ZEP is the first mobile pay-
ments system that is seamless. Earlier efforts advocated us-
ing the phone as a wallet (e.g., Google Wallet or NFC-based
payments); however, we regard these systems as different
than ZEP because they do not attempt to recognize customers
seamlessly. Since ZEP’s inception, a couple of similar sys-
tems have emerged in industry (e.g., Square [25], PayPal Bea-
con [19]), but none of them use face recognition. Instead,
they rely solely on the cashiers sorting through a list of pho-
tos to identify the buyer. In contrast, ZEP makes use of face
recognition to automatically sort the photos, and thus assists
the cashier in their task of finding the buyer’s identity. With-
out such assistance, cashiers are more likely to make errors.
We will present the results of a user study we conducted that
demonstrates how the lack of cashier assistance can lead to
high error rates. Our experience with ZEP has shown that
customers appreciate a short video of their transaction. Only
very recently, another startup (Uniqul [27]) appears to be in
the process of launching technology similar to ZEP; like ZEP,
Uniqul also uses face recognition for biometrics. However,
Uniqul requires the customer to enter a PIN number when
its identification has a low confidence [28]. In contrast, ZEP
aims at a completely seamless paying experience.

Over two years, we have designed, implemented, and de-
ployed ZEP from the ground-up. ZEP is the result of three
man-years worth of effort leading to a 5 month continuous
deployment to serve 274 customers while processing over 30
million video frames. Along the way, ZEP has undergone ma-
jor modifications as we encountered unforeseen challenges.

This paper’s main contribution is to describe the lessons from
and the insights into designing, implementing, deploying, and
operating a mobile seamless system for payments. We present
the three major phases of ZEP, from inception, to making the
system highly scalable, and finally to making it fault toler-
ant. For each phase, we analyze the design choices avail-
able. Some choices turned out to be wrong; we present these
choices and describe how we revised them. We also describe
the lessons learned from ZEP; these lessons cover various op-
erational aspects, such as meeting our IRB’s stringent privacy
requirements, and which aspects of the system’s novelty wore
off quickly on our users, and which did not.

PHASE #1: NO SINGLE IDENTIFICATION SCHEME IS
SUFFICIENT
During the very early phases of ZEP’s design, we envisioned
building a payment system capable of identifying customers



seamlessly based only on biometrics. Such a vision proved to
be a chimera because all biometrics schemes we considered
have serious shortcomings.

Biometric Schemes
A biometric scheme must meet three requirements to fit the
needs of ZEP.

It must be accurate. The biometric scheme must have low
false positives and low false negatives. False positives lead to
mis-identification, whereas false negatives lead to people not
being identified by the system.

It must be non-invasive. The biometric scheme should re-
quire little additional effort on the part of the customer. This
is essential for meeting the seamless requirement of ZEP.

It must resist attacks. It should be difficult for an adver-
sary to impersonate a particular customer. In ZEP, biometric
identification is done in the presence of a cashier. Having a
human in the loop makes biometrics much harder to attack.
For example, holding a photo in front of a camera can easily
fool face recognition, but it is much harder to fool a cashier.

Fingerprints
While fingerprint-based identification has high accuracy, we
determined that fingerprints do not meet the seamlessness re-
quirement because they require customers to touch a finger-
print sensor. Cleanliness of the sensor is an additional issue
because some people question the hygiene of such a solution.
There are also people, such as cooks or people who have sur-
vived a fire, who lack easily readable fingerprints.

Basic fingerprint readers are not attack-resistant. It is possi-
ble to build “fake fingers” undetectable to casual inspection
by a store employee. Although sophisticated mechanisms to
combat such fake readings exist, these methods are expensive
and make readings less seamless [15, 30].

Voice-based Identification
Unfortunately, the state of the art in voice-based identifica-
tion requires long voice samples to provide accuracy rates
of roughly 80-85% [29]. As the state of the art advances,
it may become viable to do zero-effort identification of users
by listening to short statements they make as a natural part
of conducting a transaction. At this time however, the rela-
tively high error rate combined with the length requirement
prevented use from using voice-based identification in ZEP.

Iris Recognition
The human iris contains distinctive patterns that seem unique
to each individual, even between identical twins. Almost two
decades ago, researchers proposed a way to compute a short
iris representation called an iris code [9]. The key require-
ment is that the eye be illuminated with a suitable source of
infrared light, then viewed by an infrared-sensitive camera.
Iris codes have been computed across populations of tens of
thousands of people from different demographics with low
false positive rates, and NIST conducts competitions periodi-
cally to measure accuracy [17].

Today, multiple companies sell iris scanners that have high
accuracy at short range [23, 5]. To use one, a user must look

into an eyepiece that combines illumination and a camera, a
procedure far from effortless. Furthermore, recent work has
shown how to fool iris recognition using eye images synthe-
sized from iris codes [10]. This suggests the need for the
“human in the loop” to avoid simple impersonations.

Longer-range systems have started to emerge, being aimed
at airport security terminals [24]. They consist of two large
pillars, similar to a metal detector. When a person walks
through, an infrared light is shined in their eyes, and the sys-
tem captures the iris images. Although this is more seamless
than short-range systems, such systems suffer from deploy-
ment barriers because they require placing pillars wherever
people must be identified.

Gait Identification
One possible depth-enabled biometric is gait identification,
which recognizes a person through idiosyncrasies in walk-
ing. This biometric is effortless since a customer would only
need to walk into a section of the store covered by the depth
sensor. Recent work has shown the Kinect and existing ma-
chine learning algorithms can reconstruct skeletal data using
depth sensors with a 91.0% accuracy rate [21]. Although the
security of this biometric is not well understood, it appears
difficult to intentionally mimic.

However, we determined that gait identification is not ready
for use in ZEP because the technology has yet to be proven
in real-life scenarios. Furthermore, the study described above
only used seven subjects who all performed the same walk in
the same room. Even in such an unrealistic environment, one
test subject could not be recognized at all.

Face Recognition
Most face recognition research work is done at the algorith-
mical level focusing on improving the accuracy rates of the
underlying algorithms, and testing them against published
benchmarks [20]. Our related work section will describe
this work in more detail, but for a survey of recent results,
see [34]. The accuracy rates reported by this work vary
widely (e.g., 50% accuracy rate in [12], and 92% accuracy
rate in [35]) depending on the algorithms used, the quality of
the training data, and the conditions under which testing is
done, such as the degree of illumination, and the variation in
the subjects’ pose or expressions.

Upon surveying the work on face recognition, two observa-
tions emerged. First, accuracy degrades rapidly as the gallery
size increases. The gallery refers to the size of the database
of identities matched against. Second, face recognition to-
day cannot produce perfect results even under ideal condi-
tions. While the accuracy rate can improve drastically in
well-controlled experiments, it can never be guaranteed to be
perfect. These two observations led us to conclude that de-
ployments in practice can succeed only when the gallery size
is not large and imperfect answers can be tolerated.

The Need for Additional Identification
As Table 1 shows, all biometric schemes we considered fall
short of meeting ZEP’s needs. Face recognition is the only
biometric that shows promise, and that only when the gallery



Finger Voice Iris Gait Face
Accurate X X X∗

Non-invasive X X X
Secure X X X

Table 1. Shortcomings Biometrics when used for ZEP. Face recognition
is accurate only if the gallery size is small; we denote this by X∗.

size is small. This analysis convinced us of the need for addi-
tional identification in ZEP.

Fortunately, we were able to overcome the shortcomings
of face recognition by adding two additional identification
schemes. First, we use device identification – identifying a
person by identifying a device he or she is carrying. The use
of device identification can ensure that the gallery is never
too large. We carefully considered three different technolo-
gies, Passive Radio-Frequency Identification (RFID), Blue-
tooth, and Bluetooth Low Energy (BLE), and chose BLE due
to its low power and low-latency device discovery.

Second, we use cashier assistance – asking the cashier to
make the final confirmation of the buyer’s identity. The ad-
ditional human in the loop can correct for face recognition
errors. For example, face recognition could provide a set of
four choices for customer identification to a store associate.

We felt this last step is necessary because the cost of a single
ZEP mis-identification is high – a false payment attributed to
a customer. However, ZEP could be used in scenarios that
could tolerate some errors, such as (1) providing coupons on-
the-fly to customers in a store based on their shopping histo-
ries, or (2) dispatching the “right” sales associate trained in
the type of merchandise most interesting to the customer. We
believe human assistance is not necessary in these scenarios
due to their cost of errors being lower than for payments.

ZEP ARCHITECTURE
Armed with the combination of our three identification tech-
nologies, we proceeded to design and implement ZEP. This
section’s goal is to provide a high-level description of the
ZEP architecture and hardware. This description serves as
the basis of our presentation of the next two phases of ZEP
that correspond to our two deployments.

ZEP has three main goals: accuracy, speed, and scalabil-
ity. High accuracy ensures we do not create frustration for
cashiers and customers due to mis-identification. Low latency
is important to ensure we provide data in time for it to be use-
ful. Finally, for the system to scale to large populations, the
system must reliably identify customers even when hundreds
of thousands of potential customers are registered. This sec-
tion describes the design chosen to satisfy these goals.

An overview of this design is presented in Figure 1. The de-
tector is a computer equipped with a camera and with Blue-
tooth Low Energy (BLE) capability. It uses the camera to
view customers’ faces and BLE to detect the presence of cus-
tomers’ devices. The detector determines which customers
are present and sends this information to a selector, which
is a tablet computer. The selector presents the customers’
names and head shots to the store, so when an employee needs
to know a certain customer’s identity, he or she can readily
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Figure 1. Overview of ZEP design.

deduce it by comparing the customer’s appearance with the
presented head shots. The system obtains these head shots,
along with the customer device information, when the cus-
tomer registers with the ZEP system.

Face Recognition
To determine which customers are in a certain location (e.g.,
directly in front of the cash register), we point the detector’s
camera at that location. By comparing the faces appearing
in the camera’s video with those of customers whose devices
are nearby, the detector decides which customers are not just
close to, but actually in, the area of interest.

To identify customers’ faces, the detector uses Microsoft
FaceSDK1, a state-of-the-art library for detecting and iden-
tifying faces in digital pictures. For each video frame the
camera captures, it passes the frame to FaceSDK. It also
provides FaceSDK with a corpus of potential customers to
choose from, namely those whose devices have recently been
observed. It describes this set of customers to FaceSDK as
a set of profiles, each of which contains a set of face images
of a certain customer. These are images we collect from the
customer during registration.

FaceSDK provides a ranking of each customer profile for
each face detected. These rankings can be combined in many
ways to produce face recognition scores for a final identifica-
tion during payment. During our deployments, we calculate
a score for each customer using an exponentially-weighted
moving average. Our evaluation describes the results of our
exploration of the effectiveness of different rankings.

Face recognition is CPU-intensive and can incur high latency.
To combat this, the detector offloads tasks to workers, i.e.,
server-class machines on the premises or in the cloud. Face
identification can also raise privacy concerns, so we need to
inform customers and give them control over their private
data. To provide more transparency in what data our system
gathers, we installed a CCTV monitor next to the camera that
shows customers the captured feed.
Hardware Details
We run the detector on an HP Z210 workstation equipped
with 16 GB of RAM and an 8-core Intel Xeon E3-1245 CPU
running at 3.3GHz. We use a Microsoft LifeCam Studio cam-
era which retails for US$100, and a CC2540 USB dongle
as the BLE scanner (next section will describe more details
about our BLE devices).

BLE-based Identification
Each registered customer must carry a device, such as a mod-
ern smartphone, equipped with a BLE radio. The customer
configures the device to be always discoverable. Because
1http://research.microsoft.com/en-us/projects/
facesdk/

http://research.microsoft.com/en-us/projects/facesdk/
http://research.microsoft.com/en-us/projects/facesdk/


BLE is designed for low-power discovery, such configuration
does not significantly impact the device’s battery life.

BLE includes various protocols for use in discovery, formal-
ized as a set of roles a participant can fill [6]. The ones we
use are the broadcaster role, which periodically broadcasts an
advertisement, and the observer role, which watches for ad-
vertisements. The customer’s device acts as the broadcaster
and the detector’s device acts as the observer.

Hardware Details
Many mobile devices support BLE, such as the iPhone and
many Android smartphones. However, as BLE is fairly new,
it is not yet well exposed to developers on these platforms.
For instance, the iPhone does not currently allow applications
to use the broadcaster role, or to maintain BLE discoverability
while the phone is asleep. This, combined with the fact that
our customers did not carry phones with BLE at the time of
our deployment, made us use an alternative BLE device.

We use Texas Instruments CC2540 BLE Mini Development
Kits, shown in Figure 2. Each kit includes a USB dongle and
battery-powered key fob, and we use the USB dongle as the
detector’s BLE device, and we provide each customer with a
key fob that simulates a smartphone with better BLE support.

Each BLE fob uses a CR2032 battery, which provides
200 mAh at 3 V. By connecting a power meter to the fob,
we determined that it consumes an average of 0.22 mW. This
suggests the battery should last slightly under four months,
which is consistent with our experience. Furthermore, since
consuming 0.22 mW for 24 hours would use only about 0.1%
of an iPhone’s battery capacity, we expect customers will not
mind running BLE continuously.

Human Assistance
ZEP provides guidance to a human employee who makes the
ultimate customer identification. It provides this guidance via
a tablet facing the cashier (labeled as the “selector” in Fig-
ure 1), which operates as follows. Every second, it requests a
list of present customers from the detector. The detector re-
turns the list of customers whose devices are present, sorted
in decreasing order of face recognition score. The tablet then
presents these to the cashier to aid in his or her identifications.

The tablet displays the head shots and names of the customers
in order. We experimented with various forms of UI and
found that showing four head shots provides an intuitive set
of identity choices to the cashier. Since the cashier may want
to consider customers with even lower scores than these four,
the tablet provides a way to scroll to lower-scored customers.

One-time Registration
A customer must perform a one-time registration with ZEP.
During registration, we record the customer’s BLE MAC ad-
dress and a short video of the customer’s face. We produce a
FaceSDK profile from this video, and we tell the customer to
select a single one of the frames as if he were selecting one
for a picture ID. We use this single frame as his head shot, i.e.,
the picture we present to an employee trying to find a match
for a physically-present customer’s face.

Figure 2. Texas Instruments CC2540 Mini Development Kit includes,
from left to right, a debugger for programming BLE devices, a key fob
BLE device, and a USB dongle BLE device.

Figure 3. ZEP deployment in our building’s cafeteria. On the left, the
camera and CCTV-like monitor are placed on the backwall. On the
right, the tablet-based selector is placed next to the POS.

ZEP DEPLOYMENTS
We deployed ZEP in two environments. The first was a two-
day technology fair with thousands of attendees, and the sec-
ond was a long-term installation at a coffee stand in our cor-
porate cafeteria shown in Figure 3. Table 2 summarizes high-
level statistics of the data gathered in each of the two deploy-
ments. During the technology fair, we only gathered data dur-
ing the second deployment day.

The two deployments were quite different. During the tech-
nology fair, many people visited our booth and coffee cart.
Thus, most gathered frames contain several faces. In con-
trast, the frames gathered during the long-term deployment in
our corporate cafeteria have many fewer faces on average. On
the left, Figure 4 illustrates the distribution of the number of
faces per frame during each deployment. On the right, Fig-
ure 4 displays the distribution of all faces found within 20 sec-
onds before a transaction occurred. For deployment #2, many
frames only had one face; because our camera recorded video
at 10 fps, only a few transactions (15%) had more than 200
face images in the 20 preceding seconds. In contrast, during
deployment #1, more than 200 face images were discovered
in those 20 seconds 95% of the time.

During both deployments, we never learned of any mis-
identification for any transaction. No customer ever re-
ported not being charged properly, or being charged on be-
half of someone else. In both our deployments, the ZEP
tablet showed up to four identities as potential matches on its
screen. A simple interface allowed the cashier to scroll down
for the next four matches. During the technology fair, which
was a busy environment with many people nearby, ZEP dis-
played the correct identity of the paying customer on the first
screen, i.e., in the top four, 80% of the time. If one considers
the second screen as well, then ZEP was perfect: All cus-
tomers appeared on the top two screens. In fact, the correct
identity was in the top five matches 92% of the time. In our



Deployment #1 Deployment #2 

Duration 2 days (03/07-03/08, 2012) 20 weeks (05/14- 09/28, 2012) 

# of registered users 255 19 

# of payments made 102 540 

# of frames gathered 256,831 30,998,191 

Table 2. High-level statistics of our two deployments.
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Figure 4. Distribution of number of faces per frame. On the left, the
data is gathered from all captured frames, whereas on the right, only
from the frames 20 seconds prior to a transaction.

cafeteria deployment, ZEP was always perfect and showed
the correct identity on the first UI screen.

PHASE #2: REDUCING FACE RECOGNITION LATENCY
Original Design
Face recognition is CPU-intensive, so unless the detector is
highly provisioned it may become overloaded, causing face
identification tasks to queue and experience high latency. One
strategy to avoid this is to detect when the load is high and
have the detector drop frames instead of queueing them; after
all, there is a lot of redundancy in consecutive frames. How-
ever, a preferred strategy is to offload work to worker threads,
if they are available on the premises or in the cloud.

Worker threads can offer large amounts of computing power
for the process of face identification. To leverage more than
one worker, we can readily parallelize the work because the
processing of each video frame is independent. We can thus
leverage multiple workers by sending different frames to dif-
ferent workers.

We used the following equation to provision the number of
workers in ZEP:

# of workers ≥ fr latency per frame ∗ 10 (1)

The number of workers should be greater than the latency of
processing a single frame times the camera throughput, which
is 10 frames per second. In all our lab experiments, a single
frame was always processed in less than one second. We thus
originally provisioned ZEP with 16 workers for our technol-
ogy fair deployment (each worker runs on one CPU core).

This assumption turned out to be wrong. The technology fair
is a very busy environment with lots of people visiting the
fair and our booth. This created very “busy” frames that typ-
ically took 2-to-3 seconds to process, and sometimes even
more than 5 seconds. Figure 5 shows one frame gathered with
11 faces in it, and this frame takes 5.26 seconds to be pro-
cessed by one worker. Our original 16 workers often fell be-
hind keeping up with the 10 frames per second rate captured

Figure 5. The technology fair deployment had very “busy” frames. This
frame has no fewer than 11 faces in it.
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Figure 6. Latency of processing one frame increases linearly with the
number of faces found in the frame.

by the camera. To remedy this problem, we immediately de-
ployed an additional 22 workers for a total of 40 workers.
This level of provisioning was sufficient to ensure that ZEP
could process all the gathered frames without drops.

The Need for Sub-frame Parallelism
While dealing with ZEP’s throughput needs was simply a
matter of overprovisioning, reducing the latency of face
recognition turned out to be much more difficult. Although
ZEP’s original design used frame-by-frame parallelization to
reduce the latency of face recognition, this technique cannot
reduce the latency below the time to process a single frame.
Unfortunately, as mentioned above, this time can be signifi-
cant. Figure 6 shows the latency of processing a frame as a
function of the number of faces found in the frame.

To solve this problem, we designed another technique to fur-
ther reduce the latency of face recognition. We divide each
frame into sub-frames, and send each sub-frame to a separate
worker. To ensure we do not leave out any faces by cutting
them into unrecognizable halves, we cut the frames in a way
that guarantees that each face will appear in full in at least one
sub-frame. To do this, we determine the maximum length any
human’s face could possibly occupy in any dimension from
the camera’s perspective. We then choose sub-frames so that
they overlap in at least this amount. Figure 7 shows an il-
lustrative four-way cut in which any two adjacent sub-frames
overlap, but note that our technique can use subframe counts
other than four. As the overlapping region’s size is equal to
the maximum facial length, each face appears in full in at
least one sub-frame.

Our technique is effective as long as the typical face size
is small relative to the size of a frame. Fortunately, this is
the case with ZEP because the camera is placed behind the
cashier at about 5-7 meters away from the customer’s face.



Figure 7. Dividing frames into sub-frames to reduce latency.

We also experimented with bringing the camera closer to the
customer’s face to improve the accuracy of face recognition.
However, some customers felt uncomfortable when seeing a
camera closer to their faces. To reduce the degree of discom-
fort, we decided to place the camera behind the cashiers.

PHASE 3: THE UNSUITABILITY OF FAST CRASH
ZEP was also deployed at a coffee stand in our building for
over four months. The long-term nature of this deployment
stressed the fault tolerance aspects of our system.

The detector was a single point of failure. For this reason,
we originally decided to pursue a design that minimizes the
recovery time for the detector and uses a fast crash recovery
model: on any error, the detector crashes and quickly restarts
afresh. Fast crash recovery is a classic technique to improve
availability in complex systems [3, 7, 18]. Note that a detec-
tor failure does not immediately affect the UI tablet (i.e., the
selector) which continues to function and show the identifica-
tion matches. Each second, the tablet contacts the detector; if
down, the tablet eventually times out (5 seconds) and shows
no more identification matches. Until the time-out fires, the
tablet remains functional and can be used to conduct transac-
tions. This design makes the detector’s restart transparently
to employees and customers.

Unfortunately, our hardware’s behavior made us abandon the
fast crash recovery model for the detector. First, our camera
took an average of two seconds to initialize, a behavior con-
sistent with inexpensive Web cameras. We believe a lower
bound of two seconds of downtime on recovery is unaccept-
able for the detector’s availability needs. Second, the camera
driver would sometimes return an error to an initialization re-
quest if the camera was recently running. Thus, sometimes it
would take 4-5 seconds of repeated tries for the camera to ini-
tialize successfully. Third, the camera would sometimes get
stuck while initializing; we thus had to write a watchdog that
would detect this and reboot again. Finally, sometimes the
auto-focus mechanism of the camera would not work prop-
erly – the camera would be out of focus on a restart. We
found that covering the camera completely for a few seconds
and uncovering it would re-trigger the auto-focus mechanism
and make the camera focus properly.

Additional problems stemmed from the BLE packet capture
software written by TI, the manufacturer of our BLE hard-
ware. This software would capture any incoming BLE pack-
ets and relay them over UDP to the detector. As this soft-
ware was designed for short-term debugging rather than long-
term operation, it often froze without reporting an error. So,
about two months into our second deployment, we re-wrote

the firmware of our BLE sniffer device and eliminated the
need to run the TI software.

Both these hardware issues made us abandon a fast crash re-
covery model for the detector. Instead, we decided to try to
make the detector as robust as possible by offloading as much
functionality as possible from it. The detector ended up be-
ing quite lean; its roles were to capture the frames, write one
copy to the disk and feed one copy to the face recognition
workers, and offer a live feed of the face recognition scores
to the UI tablet. Despite relatively little functionality, mak-
ing the detector robust turned out to be challenging: at best,
our detector could run for a week without crashing. Most er-
rors encountered continued to stem from camera hardware.
To overcome this issue, we restarted the detector manually at
off hours every couple of days.

EVALUATION
This section characterizes the error rates of each identifica-
tion scheme in ZEP, when used separately. At large scale,
all identification schemes (including ZEP’s) have high error
rates. Face recognition, BLE identification, and human-based
identification are far from perfect when faced with hundreds
(or even tens) of potential identities. This observation raises
the following question: What scale can each identification
scheme tolerate?

Performance of Face Recognition Alone
During each ZEP transaction, the cashier selects the person
paying at the register to enable payment. This triggers a video
receipt to be sent. We consider the cashier’s slection to be
the “ground truth” because these receipts never generated any
complaints about misdirected payments.

Our accuracy evaluation compares the rankings produced by
face recognition with the ground truth. In particular, we com-
pute the rank of the paying customer using face recognition
alone for identification; a rank of one would be a perfect
match. However, in our system deployments, any rank be-
tween one and four guarantees that the customer’s face im-
mediately appears on the selector UI facing the cashier. For
ranks higher than four, the cashier would need to scroll down
through the UI to find the identify of the paying customer.

Because face recognition produces a ranking of customers
for every face image found in every frame immediately pre-
ceding a transaction, these separate rankings must be aggre-
gated together to produce a single full ranking. Many separate
schemes and heuristics can be used to aggregate these rank-
ings. Based on our experimentation, we selected the follow-
ing aggregation schemes, and used them on all frames gath-
ered up to 20 seconds before a purchase was made:

1. Average/Median of all rankings. This scheme computes,
for each customer, both the average and the median of all
rankings that person attains for every face image in the trans-
action. Customers are then ranked by this measure.

2. Best ranking. This scheme computes, for each customer,
the best ranking achieved for all faces in the transaction. Cus-
tomers are then ranked by this measure.
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Figure 8. Face recognition accuracy for deployment #1 (left) and #2
(right).

3. Largest face. This scheme select the largest face in a
frame only. The intuition behind this heuristic is that the pay-
ing customer is likely to be closest to our camera. However,
note that this is not perfect because (1) people have different
face sizes, and (2) several people can all stand in front of the
cashier even though only one is the true paying customer.

4. Top k. This scheme considers the top k matches for each
ranking for each face. These rankings are then summed. An
additional boost is added to the top-ranked customer for each
face image. The intuition behind this top-k filtering is that be-
yond the first k results, face-recognition results are probably
very noisy and should be discarded.

We found the last two schemes to produce the highest accu-
racy, so we omit presenting results for the other schemes.

Hundreds of Identities
On the left, Figure 8 shows the distribution of accuracy for
our technology fair trace having 255 identities. The error
rates are high at this scale – the customer’s true identity is
in the top 10 only 20% of the time. Even worse, the customer
is in the bottom half of the ranking 25% of the time. Clearly,
face recognition at the scale of hundreds of individuals is not
viable.

Tens of Identities
On the right, Figure 8 shows the distribution of accuracy for
our second trace having only 19 identities. The error rates
improve significantly. While for the previous trace we used
k = 10 for our top k heuristic, here we used k = 5 due to the
smaller-sized database. This heuristic alone would find the
true customer on the first screen of the tablet, i.e., among the
top four matches, more than half the time. However, in some
cases, the true identity of the customer is still ranked low.

Conclusion: Face recognition suffers from high error rates at
scales beyond tens of individuals.

Performance of BLE Alone
In indoor environments, RF signal strength can vary due
to many factors including multipath interference, physi-
cal obstructions (including people), and interference from
other wireless networks. Nevertheless, previous research has
shown that RF signal strength can be used as an approximate
measure of the distance between wireless devices [4].

Various factors can affect the performance of device identifi-
cation, such as where the device’s holder is standing, where
and how the holder holds the device, and the remaining bat-
tery charge level of the device because that affects the voltage
supplied by the battery. Unfortunately, we could not control
or even measure all these properties during our deployments.
Thus, to evaluate their effects, we manually modify these con-
ditions and measure their effects.

Figure 9. Area where the ZEP long-term deployment took place. 1
through 12 show the locations where BLE signal strength was recorded.
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Figure 10. Mean signal strength (RSSI) and standard deviation, at loca-
tions 1 through 12.

Experiment Design
Figure 9 shows a diagram of the building lobby and coffee
stand where our long-term deployment took place. Locations
1 through 12 in the diagram represent locations where we
placed a customer’s BLE radio, and then recorded the sig-
nal strength as reported by the BLE receiver. Location 1 in
the diagram is where a customer at the head of the line would
stand when making a purchase, directly across from the cash
register. Locations 2 through 12 correspond to other possible
locations of people in the lobby area.

We performed experiments at each location. For certain loca-
tions we varied the position of the BLE radio on the person
performing the experiment, and we varied the battery charge
on the BLE radio. Each result shown in the graphs below
shows the signal strength data as recorded by the BLE re-
ceiver over a two minute period. We show both the mean
signal strength and the standard deviation for each result.

Result #1: RSSI does not correlate with distance
In the environment shown in Figure 9, location 1 corresponds
to where the current paying customer is likely to stand, which
is also the nearest location to our BLE receiver. Figure 10
shows the signal strength from all 12 locations, where each
location is identified on the x-axis. In every location the BLE
radio was in the front pocket of the person performing the
experiment.

There is very little correlation of distance and signal strength,
but with significant variation. For example, the mean RSSI at
location 6 is larger than that at locations 1, 2, and 5. However,
1, 2, and 5 are all closer to the BLE receiver than location 6.

Result #2: RSSI affected by how device is held
Figure 11 presents the effects on signal strength of where the
BLE radio is located on the person carrying it. For each of
four positions, we show four bars, which represent 1) in the
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Figure 11. Comparison of BLE signal strength at different positions on
a person (front pocket, back pocket, in hand, and in shoulder bag).
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Figure 12. Comparison of battery charges on the BLE transmitter (Low
= 1.75V, Medium = 2.10V, High = 2.8V).

person’s front pocket, 2) in the person’s back pocket, 3) in the
person’s right hand, and 4) inside a laptop shoulder bag that
is zipped shut. From this graph, we see that the transmitter’s
location on the person carrying it can have a large effect on
signal strength: at location 1, the in-hand signal strength is
more than 12 dB larger than the back-pocket signal strength.

Result #3: RSSI affected by battery levels
Figure 12 presents the effects of battery charge of the BLE
transmitter on RSSI. As with the previous graph, we show
three bars for each of four locations. Each bar type corre-
sponds to a different remaining-charge level, and thus a dif-
ferent voltage level, for the battery that powers the BLE radio.
We used the same BLE transmitter, but replaced the battery
to perform these experiments. In this graph, once again we
find that variations in battery charge can lead to measurable
differences in the receiver mean signal strength.

Conclusion: BLE alone suffers from high error rates and is
affected by a variety of factors, such as how the device is held
or the battery level.

Performance of Human-based Identification Alone
We used Amazon’s Mechanical Turk to conduct an experi-
ment to determine the error rates of human-based identifica-
tion when faced with tens of potential identities. We recre-
ated ZEP’s tablet UI on a website which we posted on the
Mechanical Turk and asked people to identify 15 ZEP cus-
tomers out of a database of 60 faces. Like ZEP’s UI, the
experiment showed four faces at a time together with arrows
to scroll back and forth. Table 3 shows the accuracy rates of
human-based identification for each of the 15 ZEP customers.

On one hand, these results show that humans alone are very
good at identifying customers, better than face recognition
alone, or BLE alone. On the other hand, human-based iden-
tification also does not scale – when faces with tens of faces,

Customer # 1 2 3 4 5 6 7 8
Accuracy (%) 44 76 72 80 84 92 76 80

Customer # 9 10 11 12 13 14 15
Accuracy (%) 44 80 88 84 76 72 72

Table 3. The accuracy of human-based identification.

Figure 13. Three customers mistaken for each other.

the error rates vary between 8% (at best) and 56% (at worst),
which is unacceptable for a payment system.

A deeper investigation of these results revealed a surprising
finding. The customer with the least accuracy (index #9) was
frequently mistaken for two other customers. When looking
at their pictures, we also found these three customers to re-
semble each other (see Figure 13). In our Mechanical Turk’s
tests the correct ZEP customer was the one on the left.

One of our experiment’s shortcomings is missing the longer-
term implications of human cognitive overload after selecting
among images during a whole workday. It is possible that ac-
curacy worsens as the cashiers become more tired over time.

Conclusion: Humans are more accurate at identifying cus-
tomers than either face recognition alone or BLE alone. How-
ever, their error rates are still too high at a scale of tens of
individuals.

Making Identification Work with ZEP
The combination of BLE and human-based identification
could work in low-traffic areas. However, busy areas, such
as in our technology fair deployment or inside a mall, could
have tens of people wearing BLE-enabled devices, and thus
will likely lead to human errors.

Instead ZEP combines face recognition with BLE before ask-
ing for human-assistance. Using BLE allows ZEP’s face
recognition to reduce the size of the database because the can-
didates for face recognition would only be people discover-
able by BLE. We systematically investigated the combination
of face recognition and BLE by selecting different samples of
people assumed to be “nearby” due to BLE discovery. Fig-
ure 14 shows the probability of displaying the correct identity
of the paying customer on ZEP’s tablet top screen (i.e., top 4
matches) and top two screens (i.e., top 8 matches) as a func-
tion of the number of people nearby for the technology fair
deployment. Using BLE as a filtering mechanism drastically
improves the accuracy of face recognition.

Additionally, ZEP used human-assistance as a final confir-
mation step. The combination of face recognition, BLE, and
human-assistance has identified the correct customer in all
642 payments processed during our deployments.
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Figure 14. Accuracy of combining face recognition and BLE.

LESSONS FROM REAL WORLD USAGE
Privacy. ZEP raises serious privacy concerns. In particu-
lar, some people become uncomfortable knowing their faces
are captured and submitted to an automatic face recognizer.
Some people are under the impression that technology has
reached a point today where it is able to identify and track
them even if they are not registered with our system. The dis-
crepancy between what people think face recognition tech-
nology can do and what it in fact does is quite large, and may
stem from technologically-implausible scenarios prevalent in
today’s popular movies and TV shows. To alleviate these
concerns, we have taken several steps with the goal of mak-
ing the ZEP system as transparent as possible. These steps
were taken after consultations with the IRB, privacy, and le-
gal teams at our institution.

First, in all our ZEP deployments, we made heavy use of sig-
nage indicating a face recognition system is deployed in the
area. Also, the area covered by our camera was clearly delim-
ited. To guarantee that no identification was possible outside
of the delimited area, we carefully oriented the camera posi-
tion and angle to ensure we would not capture any portion of
a person standing outside the area.

The delimited area was sprinkled with signs describing our
process and also listing three ways in which customers could
opt-out. To ensure that our data would not capture their faces,
they can either: avoid stepping into the well-delimited area,
ask the operator to turn off the camera, or sending us e-mail
specifying a time range and requesting that we manually re-
move all frames where their faces were captured acciden-
tally. Over the course of our deployments, there were sev-
eral times when the camera was turned off due to a customer
request, and we also received e-mail requesting manual re-
moval twice. Another lesson learned from these deployments
is that there is a need for a universally-known signage indicat-
ing the presence of system performing face recognition, the
same way there is well-understood signage for police inves-
tigation areas, or CCTV cameras. Figure 15 shows one such
sign possibility.

Video Receipts. Our experience with ZEP has shown a sur-
prising lesson: while customers enjoyed their seamless pay-
ments, this enjoyment quickly wore out after the first couple
purchases. In the long-term, customers’ most useful bene-
fit was that ZEP was automatically e-mailing video-based re-
ceipts of their purchases. The simple act of making receipts
convenient and video-based carried a longer-term value than
the payments alone. When our system crashed, the most com-

Figure 15. Face recognition privacy sign.

mon complaint received from customers was the absence of
receiving a video-based receipt rather than the lack of a seam-
less purchase. Customers expected video-based receipts even
when our system was down and they had to resort to tradi-
tional payment methods.

Hardware Problems. We never anticipated the hardware
problems encountered during ZEP deployments. From the
start, we limited our hardware (i.e., the camera and the BLE
dongles) to inexpensive, commodity choices. In addition to
the slow restart problems described earlier, we also had to re-
place the camera several times throughout our long-term de-
ployment because it stopped working. Although it is hard to
generalize, we suspect inexpensive cameras are not meant to
be run 24/7 for several months at a time.

UI Problem. An earlier iteration of our tablet’s user interface
posed a problem for employees. Whenever the set of highest-
scoring customers changed, our UI immediately refreshed the
display. Thus, frequently, an employee attempting to screen-
touch a customer’s face would be frustrated by the UI quickly
changing just before the touch. In some cases, the employee
would not even realize the screen had quickly changed before
the touch, and would become confused by the confirmation
page showing a different customer face. To fix this, we con-
sulted a UI expert, who recommended the sliding-tile motif
we now use: The tablet’s display is a tile of static informa-
tion; when it needs to be changed, the tile visibly slides off
the screen as another tile with new content slides in to replace
it. While obvious in retrospect, the following UI principle
guided the design of all our user-facing components: UI re-
freshes must be made gradually and not instantaneously.

The Scalability Limitations of Today’s Mobile Payments
Systems. Several startups (Square [25], PayPal Beacon [19])
have launched mobile payments that rely on the cashiers sort-
ing through a list of photos to identify the buyer. Square re-
lies on smartphone geo-fencing to detect when customers are
nearby. We believe that the granularity of geo-fencing is too
coarse for payments because it is not discriminatory enough.
If Square were to become popular, the scalability limitations
of humans sorting through pictures are likely to introduce a
high degree of errors. In contrast, PayPal relies on BLE to de-
tect nearby customers; BLE’s shorter range is likely to make
PayPal have better scalability than Square.

Foodservice Management Industry. After hearing about
ZEP, the foodservice management industry expressed strong
interest in funding and participating in additional ZEP de-
ployments. This industry consists of contract management
companies and self-operated facilities in large corporations,
colleges and universities, hospitals, nursing homes, lifecare



facilities, and correctional institutions. When we raised the
privacy issues encountered during our deployments, they
pointed out that such technology could be especially useful
in places with lesser privacy requirements, such as elemen-
tary schools or correctional institutions.

This industry is already deploying initial pilots of biometrics-
based identification inside their cafeterias. Their interest in
face recognition for identification is not due to seamlessness
or the “coolness” aspects. Instead, they focus solely on ser-
vice efficiency and scalability. Their main question to us was:
“how fast can ZEP get people through a queue?”, a question
we did not focus on in our deployments.

RELATED WORK
The techniques used for seamless customer identification
draw on previous work in wireless localization, face recog-
nition, and mobile systems that make use of computer vision.

Wireless Localization. Over the past decade, there has been
much work on using wireless radios for localization. One
of the earliest projects was Radar [2], which built an indoor
positioning system based on Wi-Fi signal strength. However,
research projects have used a variety of types of wireless radio
including Wi-Fi, RFIDs, Bluetooth, cellular, and ZigBee, to
locate people indoors; excellent overviews can be found in
two recent books [13, 33].

Face Recognition. Most research work in face recognition
has focused on designing new algorithms and improving their
accuracy rates. In contrast, there is much less published work
on the challenges facing the deployment of face recognition
systems in practice. In the US, the National Institute for Stan-
dards and Technology (NIST) has put together a benchmark
called the face recognition grand challenge (FRGC). While
researchers are measuring their algorithms’ accuracy against
benchmarks like FRGC, these benchmarks are far from the
conditions systems experience in practice.

In contrast, our experience with ZEP differs from this re-
search due to the needs of application to practice. For in-
stance, frames do not necessarily capture front shots of peo-
ple; indeed, some people never look at the camera. Also,
the lighting can drastically change over time, e.g., a lightbulb
may stop working for a day then get replaced with a newer,
much brighter bulb. Additionally, for cost and logistical rea-
sons, we used a non-professional-grade camera.

Nevertheless, the face recognition literature [31, 35, 34] con-
tains several projects focused on evaluating the accuracy of
face recognition in more realistic scenarios. One project eval-
uated the accuracy of recognizing a set of 35 celebrities in
videos stored on YouTube; it reported a 60–70% accuracy rate
depending on the algorithm used [12]. To achieve this, the
identification techniques relied on face tracking, which iden-
tifies the same person across multiple consecutive frames.
Our ZEP deployment did not use face tracking.

Another related project conducted an accuracy evaluation of
several face recognition techniques using footage of lower
quality [8]. The accuracy is evaluated using a metric called
the half-error total rate, which is the average of false positive

and false negative rates. While measuring accuracy is similar
to measuring the false positive rate, a higher accuracy came
at a higher false negative rate, which means that many frames
reported no faces detected. Examining the results, most al-
gorithms achieved an 80% accuracy rate only by admitting
a 25–50% false-negative rate, i.e., by accepting no faces are
found in a quarter to half of all frames.

Finally, a few other projects report high accuracy rates for
face recognition in uncontrolled environments, specifically
86.3% [26] and 92% [35]. However, these results are
obtained by constraining subject poses to be either front-
facing [26] or constant across frames [35].

Mobile Systems and Computer Vision. Recent work has
started to use computer vision in mobile systems. One ap-
plication is localizing distant objects, such as buildings, by
looking at them through a smartphone [14]. The combination
of GPS-based localization with computer-vision processing
of images gathered by a smartphone shows promising results
in accurately pinpointing an object’s location. Another appli-
cation is cloud-based face recognition, such as that done by
Google Picasa, to automatically tag photos taken by a smart-
phone [22]. Another project implements an indoor local-
ization scheme based on ambience fingerprinting by observ-
ing that most stores have very distinct photo-acoustic signa-
tures [1]. Finally, a recent workshop paper demonstrates the
practicality of identifying people based on the patterns and
colors of their clothes [32].

CONCLUSIONS
This paper describes ZEP, a mobile payments systems in
which customers pay with zero-effort. ZEP uses three
complementary identification technologies: face recognition,
BLE-based device detection, and human assistance. ZEP has
been deployed twice and went through three different phases
that affected its design. The paper presents the scalability lim-
itations of each identification technology when used alone.
The paper also describes the challenges encountered with
making ZEP fault tolerant. Finally, the paper presents the
lessons learned from our ZEP deployments.
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